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Abstract. We consider some of the most important conjectures

in the study of the game of Cops and Robbers and the cop num-

ber of a graph. The conjectures touch on diverse areas such as

algorithmic, topological, and structural graph theory.

1. Introduction

The game of Cops and Robbers and its associated graph parame-

ter, the cop number, have been studied for decades but are only now

beginning to resonate more widely with graph theorists. One of the

reasons for this owes itself to a challenging conjecture attributed to

Henri Meyniel. Meyniel’s conjecture, as it is now called, is arguably

one of the deepest in the topic, and will likely require new techniques to

tackle. The conjecture has attracted the attention of the graph theory

community, and has helped revitalize the topic of Cops and Robbers.

See Section 2 below.

As the game is not universally known, we define it here and provide

some notation (it is customary to always begin a Cops and Robbers

paper with the definition of cop number; regardless of best intentions,

it is difficult to buck the trend). We consider only finite, undirected
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graphs in this paper, although we can play Cops and Robbers on infi-

nite graphs or directed graphs in the natural way. Further, since the

cop number is additive on connected components, we consider only

connected graphs.

We now formally define the game. Cops and Robbers is a game of

perfect information; that is, each player is aware of all the moves of the

other player. There are two players, with one player controlling a set

of cops, and the second controlling a single robber. The game is played

over a sequence of discrete time-steps; a round of the game is a move

by the cops together with the subsequent move by the robber. The

cops and robber occupy vertices, and when a player is ready to move

in a round they must move to a neighboring vertex. The cops move

first, followed by the robber; thereafter, the players move on alternate

steps. Players can pass, or remain on their own vertices. Observe that

any subset of cops may move in a given round. The cops win if after

some finite number of rounds, one of them can occupy the same vertex

as the robber. This is called a capture. The robber wins if he can evade

capture indefinitely. Note that the initial placement of the cops will not

affect the outcome of the game, as the cops can expend finitely many

moves to occupy a particular initial placement (the initial placement

of the cops may, however, affect the length of the game).

Note that if a cop is placed at each vertex, then the cops are guaran-

teed to win. Therefore, the minimum number of cops required to win

in a graph G is a well-defined positive integer, named the cop number

of the graph G. The notation c(G) is used for the cop number of a
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graph G. If c(G) = k, then G is k-cop-win. In the special case k = 1,

G is cop-win.

For a familiar example, the cop number of the Petersen graph is 3. In

a graph G, a set of vertices S is dominating if every vertex of G not in

S is adjacent to some vertex in S. The domination number of a graph

G is the minimum cardinality of a dominating set in G. Note that 3

cops are sufficient in the Petersen graph, as the domination number

upper bounds the cop number. See Figure 1. This bound, however, is

far from tight. For example, paths (or more generally, trees), have cop

number 1.

Figure 1. The Petersen graph with white vertices dominating.

There are now a number of conjectures that have arisen on Cops and

Robbers, touching on many areas including algorithmic, topological,

and structural graph theory. Some of these are more or less known.

We will discuss these in the sections below.

When I am discussing Cops and Robbers with a newcomer, I am

aware of the following, purely tongue-in-cheek principle:
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Cops and Robbers Principle: Once you learn about Cops and Rob-

bers you are compelled to prove results about it.

The Cops and Robbers Principle, while itself is unverifiable, does

seem fairly pervasive. One reason for this owes to the fact that the

cop number, first defined in 1984, remains an unfamiliar parameter

to many graph theorists. The cop number has limited connections

(at least based on our current knowledge) to commonly studied graph

parameters; this makes the field both challenging and fresh. The game

is also simple to define and easy to play. You can even play it with

some coins on a drawn graph with non-mathematicians.

Another reason why the Principle so often holds owes to the wealth

of variations possible with the game. Almost every talk I give on the

subject at a conference inspires the audience to spawn at least one

(occasionally new) variation. This is not surprising as mathematicians

have active imaginations, and Cops and Robbers definitely provides a

fertile playground for the imaginative. One of my early mentors, the

late lattice theorist Gunter Bruns, told the story of how he knew a

mathematician who quit the field to become a poet. His reason for

quitting was that he did not have enough imagination!

As a concrete example of this aspect of the Principle, at the 2014

SIAM Conference on Discrete Mathematics held in Minneapolis, col-

leagues Shannon Fitzpatrick and Margaret-Ellen Messenger suggested

the new variant Zombies and Survivors. In this game, the zombies

(cops) have minimal intelligence, and always move directly towards

the survivor (robber) along a shortest path (if there is more than one
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such path, then the zombies get to choose which one). We laughed at

the following instance of the game. Consider a group of ⌊n/2⌋−2 zom-

bies on a cycle Cn, where n ≥ 4. Place them on distinct, consecutive

vertices, so they form a path of zombies. The survivor then chooses

a vertex distance two from the “lead” zombie (that is, the leaf of the

zombie path). This placement of the zombies would result in zombies

endlessly chasing the survivor in an orderly path. The survivor is for-

ever just out of reach of the massive horde of hungry zombies! After

learning about this variant, I told my colleagues they maybe watching

too many horror movies. In all seriousness, this variant speaks volumes

about the broad appeal of the game.

The historical origin of the game is an interesting story in its own

right. The game of Cops and Robbers was first considered by Quilliot

[38] in his doctoral thesis. The game remained largely unknown at this

time until it was considered independently by Nowakowski and Winkler

[34]. According to Google Scholar, that 5 page paper is the most cited

of either author! Mathematics is no exception to the slogan “less is

more.”

Interestingly, both [34, 38] consider the game played with only one

cop. In particular, they both focus on characterizing the cop-win

graphs. The introduction of the cop number came a year later in 1984

with the important work of Aigner and Fromme [1].

Our book summarizes much of the research on Cops and Robbers up

to 2011; see [17]. The interested reader is referred there for a broader

background than provided here; see also the surveys [2, 8, 9, 27].
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2. Meyniel’s conjecture

Graphs with cop number larger than one are not particulary well

understood. The cop-win case is, on the other hand, well characterized

as we describe next.

The closed neighborhood of a vertex x, written N [x], is the set of

vertices adjacent to x (including x itself). A vertex u is a corner if

there is some vertex v such that N [u] ⊆ N [v].

A graph is dismantlable if some sequence of deleting corners results

in the graph K1. For example, each tree is dismantlable: delete leaves

repeatedly until a single vertex remains. The same approach holds with

chordal graphs, which always contain at least two simplicial vertices

(that is, vertices whose neighbor sets are cliques). The following result

characterizes cop-win graphs.

Theorem 1 ([34]). A graph is cop-win if and only if it is dismantlable.

The theorem provides a recursive structure to cop-win graphs, made

explicit in the following sense. Observe that a graph is dismantlable if

the vertices can be labeled by positive integers {1, 2, . . . , n}, in such a

way that for each i < n, the vertex i is a corner in the subgraph induced

by {i, i + 1, . . . , n}. This ordering of V (G) is called a cop-win ordering

(in the context of chordal graph theory, this is called an elimination

ordering). See Figure 2 for a graph with vertices labeled by a cop-win

ordering.

How big can the cop number be? First notice that for every positive

integer n, there is a graph with cop number n. Hypercubes, written
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Figure 2. A cop-win ordering of a cop-win graph.

Qn (where n is a non-negative integer), are a family of graphs realizing

every possible cop number (if we take take Q2 to be K1). To see this,

note that it was shown in [32] that for the hypercube Qn of dimension

n, c(Qn) = ⌈n+1
2
⌉.

For a positive integer n, let c(n) be the maximum cop number of

a graph of order n (recall that we only consider connected graphs).

Meyniel’s conjecture states that there is a constant d > 0 such that for

all positive integers n we have that

c(n) ≤ d
√
n.

The conjecture was mentioned briefly in Frankl’s paper [23] as a

personal communication to him by Henri Meyniel in 1985 (see page 301

of [23] and reference [8] in that paper). As Meyniel has since passed

away, we may never know his original motivation for the conjecture.

Meyniel actually only published one short paper on Cops and Robbers,

on a topic unrelated to the conjecture; see [32].
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Meyniel’s conjecture seemed to be largely unnoticed until recently. I

may have been partly responsible for Meyniel’s conjecture’s rehabilita-

tion. In 2006, I attended a small workshop organized by Geňa Hahn at

the Bellairs Research Institute in Barbados, and I spoke about recent

research on the cop number. The workshop was delightful, in no small

part owing to the beautiful location. Jan Kratochv́ıl was there, and it

appeared that the Cops and Robbers Principle was still in effect. He

subsequently told Béla Bollobás about the parameter and conjecture,

who then produced [7] (I am making this assumption based on the ac-

knowledgement to Kratochv́ıl in that paper). Since then the interest

in the conjecture has steadily grown. I also spoke at Bellairs about the

capture time of a graph, which led to joint with Kratochv́ıl and others

[14]. A play of the game with c(G) cops is optimal if its length is the

minimum over all possible plays for the cops, assuming the robber is

trying to evade capture for as long as possible. There may be many

optimal plays possible (for example, on the path P4 with four vertices,

the cop may start on either of the two vertices in the centre), but the

length of an optimal game is an invariant of G. When c(G) cops play

on a graph G, we denote this invariant by capt(G) and refer to this as

the capture time of G. In [14], the authors proved that if G is cop-win

(that is, has cop number 1) of order n ≥ 5, then capt(G) ≤ n − 3.

By considering small-order cop-win graphs, the bound was improved

to capt(G) ≤ n − 4 for n ≥ 7 in [25]. Examples were given of planar

cop-win graphs in both [14, 25] which prove that the bound of n− 4 is
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optimal. In addition to these works, capture time was studied in grids

[33] and hypercubes [16].

For many years, the best known upper bound for general graphs was

the one proved by Frankl [23].

Theorem 2 ([23]). If n is a positive integer, then

c(n) = O

(

n
log logn

log n

)

.

I spoke about the cop number at the University of Waterloo in Oc-

tober 2007, to a group consisting mainly of theoretical computer scien-

tists. My talk spurred a bright doctoral student Ehsan Chiniforooshan

to consider improving on known upper bounds on the cop number. The

Cops and Robbers Principle was again in full force that day! Chini-

forooshan exploited similar ideas with retracts and proved the following

bound, giving a modest improvement to Frankl’s bound.

Theorem 3 ([18]). If n is a positive integer, then

c(n) = O

(

n

log n

)

.

At the time of writing this chapter in January 2015, the conjecture

is still open. The best known upper bound was proved independently

by three sets of authors. Interestingly, all of them use the probabilistic

method in their proofs.

Theorem 4 ([24, 31, 41]). If n is a positive integer, then

c(n) = O
( n

2(1−o(1))
√

logn

)

.
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To put Theorem 4 into perspective, even proving c(n) = O(n1−ǫ) for

any given ǫ > 0 remains open.

Pra lat and Wormald in some recent work proved the conjecture for

random graphs [36] and for random regular graphs [37], which gives

us more evidence that the conjecture is true. I tend to believe the

conjecture is true on good days; when I am in a bad mood I imagine

the universe contains some strange graph with cop number of larger

order than
√
n.

There are graphs whose cop number is Θ(
√
n); for example, consider

the incidence graphs of finite projective planes. These graphs are of

order 2(q2 + q + 1), where q is a prime power, and have cop number

q + 1. See Figure 3 for an example. The Cops and Robbers Principle

was in effect when I described this graph family to the design theorist

Andrea Burgess, which lead to several other families with conjectured

largest cop number; see [10] .
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Figure 3. The Fano plane and its incidence graph, the
Heawood graph.
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Define mk to be the minimum order of a connected graph G satisfying

c(G) ≥ k. Trivially, m(1) = 1 and m(2) = 4. The recent work [3, 4]

establishes the fact that m3 = 10. The unique isomorphism type of

graph of order 10 with cop number 3 is the Petersen graph. It is easy

to see that Meyniel’s conjecture is equivalent to the property that

mk = Ω(k2).

It might be fruitful to consider, therefore, the minimum orders of graph

with a given cop number. We do not even know the exact value of m4.

The Petersen graph is the unique 3-regular graph of girth 5 of minimal

order. A (k, g)-cage is a k-regular graph with girth g of minimal order.

See [21] for a survey of cages. The Petersen graph is the unique (3, 5)-

cage, and in general, cages exist for any pair k ≥ 2 and g ≥ 3. Aigner

and Fromme [1] proved that graphs with girth 5, and degree k have cop

number at least k; in particular, if G is a (k, 5)-cage, then c(G) ≥ k.

Let n(k, g) denote the order of a (k, g)-cage. Is it true that a (k, 5)-cage

is k-cop-win? It is natural to speculate whether mk = n(k, 5) for k ≥ 4.

It seems reasonable to expect that this is true at least for small values

of k. It is known that n(4, 5) = 19, n(5, 5) = 30, n(6, 5) = 40 and

n(7, 5) = 50. Do any of these cages attain the analogous mk? More

generally, we can ask the same question for large k: is mk achieved by

a (k, 5)-cage?
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3. Graph genus

With the analogy of the chromatic number in mind, what can be

said on bounds on the cop number in planar graphs? This was settled

early on by Aigner and Fromme [1].

Theorem 5 ([1]). If G is a planar graph, then c(G) ≤ 3.

The idea of the proof of Theorem 5 is to increase the cop territory ;

that is, a set vertices S such that if the robber moved to S, then he

would be caught. Hence, the number of vertices the robber can move

to without being caught is eventually is reduced to the empty set, and

so the robber is captured. While their proof is indeed elegant, it is not

easy to follow. We wrote a proof which hopefully is easier to digest in

Chapter 4 of [17] (based on ideas of Brian Alspach and Boting Yang).

The genus of a graph is the smallest integer n such that the graph

can be drawn without edge crossings on a sphere with n handles. Note

that a planar graph has genus 0. Less is known about the cop num-

ber of graphs with positive genus, and this provides our second major

conjecture on the topic. The main conjecture in this area is due to

Schroeder, and this conjecture I think deserves to be better known.

In [40], Schroeder conjectured that if G is a graph of genus g, then

c(G) ≤ g + 3. Quilliot [39] proved the following.

Theorem 6 ([39]). If G is a graph of genus g, then c(G) ≤ 2g + 3.

In the same paper where his conjecture was stated, Schroeder showed

the following.
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Theorem 7 ([40]). If G is a graph of genus g, then

c(G) ≤
⌊

3g

2

⌋

+ 3.

Theorem 7 implies the following.

Corollary 8 ([40]). If G is a graph that can be embedded on a torus,

then c(G) ≤ 4.

We do not know much about the planar graphs with cop numbers

1, 2, or 3. As cop-win graphs have a dismantling structure, that might

help to classify the planar cop-win graphs but there is no success yet

on that front.

4. Algorithms

We now describe a major conjecture on Cops and Robbers that was

recently settled. Indeed, it is not everyday that one of your post-docs

comes into your office claiming to have proven a 20 year old conjecture!

We were lucky enough to have William Kinnersley as a post-doctoral

fellow for two years starting in 2012. William came to Ryerson Uni-

versity having just completed his doctoral studies under Doug West’s

supervision, and he had a keen interest in the analysis of games played

on graphs. While he had not worked much with Cops and Robbers

before he came to Ryerson, the Cops and Robbers Principle was in

effect, and he quickly delved into the topic.
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EXPTIME is the class of decision problems solvable in exponential

time. A decision problem is EXPTIME-complete if it is in EXP-

TIME, and for every problem in EXPTIME there is a polynomial-

time algorithm that transforms instances of one to instances of the

other with the same answer. William proved that computing the cop

number is EXPTIME-complete. Before going further to discuss this,

let us formalize things and consider the following two graph decision

problems.

k-COP NUMBER: Given a graph G and a positive integer k, is c(G) ≤

k?

k-FIXED COP NUMBER: Let k be a fixed positive integer. Given a

graph G, is c(G) ≤ k?

The main difference between the two problems is that in k-COP NUM-

BER the integer k may be a function of n, and so grows with n. In

k-FIXED COP NUMBER, k is fixed and not part of the input, and so is

independent of n.

The following result has been proved several times independently in

the literature on the topic.

Theorem 9 ([6, 12, 29]). The problem k-FIXED COP NUMBER is in

P.

If k is not fixed (and hence, can be a function of n), then the problem

becomes less tractable.

Theorem 10 ([22]). The problem k-COP NUMBER is NP-hard.
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Theorem 10 is proved in Fomin et al. [22] by using a reduction from

the following well-known NP-complete problem:

DOMINATION: Given a graph G and an integer k ≥ 2, is there a

dominating set in G of cardinality at most k?

Goldstein and Reingold [26] proved that it is EXPTIME-complete

to compute the k-COP NUMBER problem assuming the initial position

of the cops and robber is given as part of the input. They also conjec-

tured in [26] that k-COP NUMBER is EXPTIME-complete. Kinners-

ley settled this conjecture in a recent tour de force [30], using a series

of non-trivial reductions.

Note that Theorem 10 does not say that k-COP NUMBER is in NP;

that is an open problem! There is little research on the optimal running

times for polynomial time algorithms to test if a graph has a small cop

number such as 1, 2, or 3.

5. Variations

As you might expect, there are countless variations of the game of

Cops and Robbers. Usually (though not always) such variations pro-

vide more complications than those found in the original game. One

could play the game by giving the cops more power; in this direction,

we studied the game of distance k Cops and Robbers [11, 12], where

cops can capture the robber if it is within distance k. We could speed

up the robber [24], allow the robber to capture a cop [13], or make the

robber invisible [19, 20] (see Chapter 8 of [17] for more on these and
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other variants). We could also play on infinite graphs [15, 28], where

many results from the finite landscape dramatically change.

We mention one variation in particular: the game of Lazy Cops and

Robbers. This game is played in a similar fashion to Cops and Robbers,

but only one cop may move at a time. Hence, Lazy Cops and Robbers

is a game more akin to chess or checkers. The analogous parameter is

the lazy cop number, written cL(G). Our knowledge of properties of the

lazy cop number is limited, but in some cases its value is much larger

than the classical cop number.

This game and parameter was first considered by Offner and Ojakian [35].

For hypercubes, it was proved in [32] that c(Qn) = ⌈n+1
2
⌉. In contrast,

the following holds for the lazy cop number.

2⌊
√

n/20⌋ ≤ cL(Qn) = O(2n log n/n3/2). (1)

A recent result of [5] improves the lower bound in (1).

Theorem 11 ([5]). For all ε > 0, we have that

cL(Qn) = Ω

(

2n

n5/2+ε

)

.

Thus, the upper and lower bounds on cL(Qn) differ by only a poly-

nomial factor. The proof uses the probabilistic method coupled with a

potential function argument. It is an open problem to find the exact

asymptotic order of cL(Qn). The behaviour of the lazy cop number on

planar graphs, or, more generally, graphs of higher genus is also not

well understood.
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Cops and Robbers represent the tip of the iceberg of what are called

vertex-pursuit games, graph searching, or good guys vs bad guys games

(the latter phrase was coined by Richard Nowakowski). A tough but

fun problem in this general setting is on Firefighting in the infinite

plane. Consider an infinite hexagonal grid. Every vertex is either

on fire, clear, or protected. Initially, all vertices are clear. In the first

round, fire breaks out on one vertex. In every round, a cop or firefighter

protects one vertex which is not yet on fire. The fire spreads in the

next round to all clear neighbors of the vertices already on fire. Once

a vertex is on fire or is protected it permanently remains in that state.

Note that unlike Cops and Robbers, the firefighter does not play on

the graph, but can teleport anywhere it likes. Further, the fire the

mindlessly spreads where it can.

Two firefighters can protect vertices so that the fire only burns two

vertices in the hexagonal grid. It is not known if one firefighter can

arrange things so the fire burns only finitely many vertices. In other

words, can one firefighter build a wall containing the fire to a finite

subgraph of the grid? It is conjectured that this is indeed impossible.
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[25] T. Gavenčiak, Cop-win graphs with maximal capture-time, Studentská vědecká
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