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1 Introduction

Complex networks arise in many diverse contexts, ranging from web pages and
their links, protein-protein interaction networks, and social networks. The modelling
and mining of these large-scale, self-organizing systems is a broad effort spanning
many disciplines. A number of common properties have been observed in complex
networks, such as power law degree distributions and the small world property (see
Section 2 for further background on these properties).

While classical binomial random graphs form a well studied field in their own
right, in the last decade we have seen a wealth of new random graph models mod-
elling complex networks. These stochastic graph models simulate properties of com-
plex networks, but also expanding our theoretical understanding of random graphs.
Models for complex networks also give insight into the underlying generative prop-
erties of complex networks, and can serve as a predictive tool in their evolution.

With the current popularity of on-line social networks (or OSNs) such as Face-
book, LinkedIn, and Twitter, there is an increasing interest in their measurement
and modelling. In addition to other complex networks properties, OSNs exhibit
shrinking distances over time, increasing average degree, and bad spectral expan-
sion. Unlike other complex networks such as the web graph, models for OSNs are
relatively new and lesser known. In on-line social networks, models may help detect
and classify communities, and better clarify how news and gossip is spread in social
networks.
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We will survey the properties of complex networks and their models, focusing on
the case of OSNs. A more detailed survey of complex networks (without the focus
on OSNs) may be found in the book [4]. In Section 2 we give a brief overview of
some the main observed properties of OSNs. These are the key properties that net-
work models attempt to simulate. We study various complex network models in Sec-
tion 3. Our focus is on five models, each rigorously formulated and analyzed: Kro-
necker graphs [25, 26], the MAG model [20], the G(Q,E) affiliation graph model
[24], the ILT model [5], and the GEO-P model [7]. These models focus primarily on
simulating properties of social networks, and are relatively recent. We finish with a
list of open problems surrounding the modelling of OSNs.

2 Properties of Complex Networks

Researchers are now in the enviable position of observing how OSNs evolve over
time, and as such, network analysis and models of OSNs typically incorporate time
as a parameter. Unlike in traditional social network analysis, we can now mine the
social interactions of millions of people from across the globe. While by no means
exhaustive, some of the main observed properties of OSNs include the following.
For definitions of the terms used below (such as diameter, clustering coefficient,
etc), see [4].

(i) Large-scale. OSNs are examples of complex networks with number of nodes
(which we write as n) often in the millions; further, some users have dispropor-
tionately high degrees. About half a billion users are registered on Facebook [12].
Some of the nodes of Twitter corresponding to well-known celebrities including
Lady Gaga and Justin Bieber have degree over ten million [36].

(ii) Small world property and shrinking distances. The small world property, in-
troduced by Watts and Strogatz [38], is a central notion in the study of complex net-
works (see also [21]). The small world property demands a low diameter of O(logn),
and a higher clustering coefficient than found in a binomial random graph with the
same number of nodes and same average degree. Adamic et al. [1] provided an early
study of an OSN at Stanford University, and found that the network has the small
world property. Similar results were found in [2] which studied Cyworld, MyS-
pace, and Orkut, and in [32] which examined data collected from Flickr, YouTube,
LiveJournal, and Orkut. Low diameter (of 6) and high clustering coefficient were re-
ported in the Twitter by both Java et al. [19] and Kwak et al. [23]. Kumar et al. [22]
reported that in Flickr and Yahoo!360 the diameter actually decreases over time.
Similar results were reported for Cyworld in [2]. Well-known models for complex
networks such as preferential attachment or copying models have logarithmically
growing diameters with time.

(iii) Power law degree distributions. In a graph G of order n, let Nk = Nk(n)
be the number of nodes of degree k. The degree distribution of G follows a power
law if Nk is proportional to k−b, for a fixed exponent b > 2 and some range of k.
Power laws were observed over a decade ago in subgraphs sampled from the web



Complex Networks and Social Networks 3

graph, and are ubiquitous properties of complex networks (see Chapter 2 of [4]).
Kumar, Novak, and Tomkins [22] studied the evolution of Flickr and Yahoo!360,
and found that these networks exhibit power-law degree distributions. Power law
degree distributions for both the in- and out-degree distributions were documented
in Flickr, YouTube, LiveJournal, and Orkut [32], as well as in Twitter [19, 23].

(iv) Bad spectral expansion. Social networks often organize into separate clusters
in which the intra-cluster links are significantly higher than the number of inter-
cluster links. In particular, social networks contain communities (characteristic of
social organization), where tightly knit groups correspond to the clusters [33]. As
a result, it is reported in [11] that social networks, unlike other complex networks,
possess bad spectral expansion properties realized by small gaps between the first
and second eigenvalues of their adjacency matrices.

(v) Bad compressibility. A recent study of [8] contrasts the compressibility of
OSNs with the web graph. Assume that the vertex set of the digraph G is given
by [n] = {1,2, . . . ,n}. The so-called minimum logarithmic arrangement or MLOGA
problem, is to find a permutation π : V (G)→ [n] such that the term

∑
(u,v)∈E

log |π(u)−π(v)| (1)

is minimized. The motivating idea is minimize the sum of the edge lengths accord-
ing to the ordering of vertices. The cost (1) represents the compression size in an
encoding that is nearly informational-theoretically optimal. While MLOGA is NP-
hard [8], the authors of [8] introduce heuristics for its computation. Using data from
LiveJournal and Flickr, it was found in [8] that the compression performance with
different orderings were worse than that found in web graph samples. The lack of a
natural ordering of social networks when compared say to the URL ordering of web
pages may be the cause of the poor incompressibility. Nevertheless, bad compress-
ibility appears to be another feature peculiar to OSNs when, say, contrasted with the
web graph.

(vi) Densification power law. Let (Gt : t ≥ 0) be sequence of graphs such that
Gt is an induced subgraph of Gt+1 for all t ≥ 0, and suppose that Gt has et edges
and nt nodes. The graph sequence satisfies a densification power law if there is a
constant a ∈ (1,2) such that for sufficiently large t, et is proportional to na

t . We call
a the exponent of the densification power law. In particular, the average degree of the
network grows to infinity with the order of the network . In [25], densification power
laws were reported in several real-world networks such as a physics citation graph
and the internet graph at the level of autonomous systems. Densification power laws
were found in Flickr and Yahoo!360 in [22].
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3 Models of Complex Networks

In this chapter, we do not give an exhaustive overview of models for complex net-
works. A survey of such models may be found in Chapter 4 of the book [4]. We
focus, rather, on the relatively new models for OSNs introduced over the last few
years. We are content to survey the results here, pointing the reader to further details
and proofs in the papers cited. Many properties of the models hold with probability
tending to 1 as time (or the order of the graphs considered) tends to infinity; we say
such properties hold asymptotically almost surely, or aas.

3.1 Kronecker graphs

Kronecker graphs [25, 26] were one of the early successful models for complex
networks with densification. Their definition relies on a certain well known graph
product. Given graphs G and H, form the categorical (or Kronecker) product G×H
by setting vertices to be pairs (a,b) with a ∈V (G) and b ∈V (H), and (a,b) joined
to (c,d) if and only a is joined to c in G, and b is joined to d in H. See Figure 1.

Fig. 1 The Kronecker product of the path with three vertices with itself.

Let A and B be two real matrices, with sizes n×m and n′×m′, respectively. The
Kronecker (or tensor) product of A and B, is the matrix A⊗B with size nn′×mm′
given by 



a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

an1B an2B · · · anmB


 .

If A(G) is the adjacency matrix of G, then note that

A(G×H) = A(G)⊗A(H).
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The Kronecker graphs are formed by forming the kth power Gk of G with respect to
this product; we call G here the initiator graph. The motivation behind this definition
is that to produce Gk from Gk−1, nodes of a community expand to copies of the
community. Note that the Kronecker model is a deterministic one.

The authors prove the following theorem, which leads to power law graphs by
the choice of the initiator graph.

Theorem 1. [25, 26] Kronecker graphs have multinomial degree distributions.

Further, Kronecker graphs satisfy a densification power law and constant diame-
ter.

Theorem 2. [25, 26] Kronecker graphs Gk satisfy a densification power law with
exponent

log(|E(G)|)/ log(|V (G)|).
Further, if G is reflexive, then the diameter of Gk is the diameter of G.

The model is made tuneable by allowing the initial adjacency matrix A(G) to
have real entries in [0,1]. Hence, we may think of the initiator graph G as a prob-
ability space, where the probability there is an edge between i and j is the i j entry
of A(G) (although this is not exactly the case as the row (or column) sums may
add up to a quantity greater than 1). Such stochastic Kronecker graphs with certain
initiator graphs of order 2, were studied by Mahdian and Xu [31]. They studied the
giant component of graphs generated by the model, and proved it aas has a constant
diameter beyond the connectivity threshold.

It is shown in [27] that the Kronecker graph model with certain 2× 2 initiator
matrices is useful in simulating complex networks. Their work shows that certain
stochastic Kronecker matrices fit samples of the web graph, the internet AS graph,
Flickr, and certain biological networks. A fast, scalable algorithm KRONFIT was
introduced to fit real network data to Kronecker graphs.

3.2 The ILT model

The Iterated Local Transitivity (ILT) model [5], simulates OSNs and other complex
networks. The central idea behind the ILT model is what sociologists call transi-
tivity: if u is a friend of v, and v is a friend of w, then u is a friend of w (see, for
example, [15, 34, 39]). In its simplest form, transitivity gives rise to the notion of
cloning, where u is joined to all of the neighbours of v. In the ILT model, given some
initial graph as a starting point, nodes are repeatedly added over time which clone
each node, so that the new nodes form an independent set. The only parameter of
the model is the initial graph G0, which is any fixed finite connected graph. Assume
that for a fixed t ≥ 0, the graph Gt has been constructed. To form Gt+1, for each
node x ∈V (Gt), add its clone x′, such that x′ is joined to x and all of its neighbours
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at time t. Note that the set of new nodes at time t + 1 form an independent set of
cardinality |V (Gt)|. As with Kronecker model, the ILT model is deterministic.

We write degt(x) for the degree of a node at time t, nt for the order of Gt , and et
for its number of edges. Define the volume of Gt by

vol(Gt) = ∑
x∈V (Gt )

degt(x) = 2et .

Theorem 3. [5] For t > 0, the average degree of Gt equals
(

3
2

)t (vol(G0)
n0

+2
)
−2.

Note that Theorem 3 supplies a densification power law with exponent a = log3
log2 ≈

1.58.
Define the Wiener index of Gt as

W (Gt) =
1
2 ∑

x,y∈V (Gt )
d(x,y).

The Wiener index may be used to define the average distance of Gt as

L(Gt) =
W (Gt)(nt

2

) .

Theorem 4. [5] For t > 0,

L(Gt) =
4t

(
W (G0)+(e0 +n0)

(
1− ( 3

4

)t
))

4tn2
0−2tn0

.

Note that the average distance of Gt is bounded above by diam(G0)+1 (in fact,
by diam(G0) in all cases except cliques). Further, for many initial graphs G0 (such
as large cycles) the average distance decreases.

The clustering coefficient of the graph at time t generated by the ILT model is
estimated as follows.

Theorem 5. [5]

Ω
((

7
8

)t

t−2
)

= C(Gt) = O
((

7
8

)t

t2
)

.

Observe that C(Gt) tends to 0 as t → ∞. If we let nt = n (so t ∼ log2 n), then this
gives that

C(Gt) = nlog2(7/8)+o(1).

In contrast, for a random graph G(n, p) with comparable average degree
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pn = Θ((3/2)log2 n) = Θ(nlog2(3/2))

as Gt , the clustering coefficient is p = Θ(nlog2(3/4)) which tends to zero much faster
than C(Gt). (For a discussion of the clustering coefficient of G(n, p), see Chapter 2
of [4].)

Let A denote the adjacency matrix and D denote the diagonal adjacency matrix
of a graph G of order n. Then the normalized Laplacian of G is

L = I−D−1/2AD−1/2,

where I is the n× n identity matrix. Let 0 = λ0 ≤ λ1 · · · ≤ λn−1 ≤ 2 denote the
eigenvalues of L . The spectral gap of the normalized Laplacian is

λ = max{|λ1−1|, |λn−1−1|}.

The following theorem suggests a significant spectral difference between graphs
generated by the ILT model and random graphs. Define λ (Gt) to be the spectral gap
of the normalized Laplacian of Gt .

Theorem 6. [5] For t ≥ 1, λ (Gt) > 1
2 .

Theorem 6 represents a drastic departure from the good expansion found in random
graphs, where λ = o(1) [9].

Let ρ0(t)≥ |ρ1(t)| ≥ . . . denote the eigenvalues of the adjacency matrix of Gt . If
A is the adjacency matrix of Gt , then the adjacency matrix of Gt+1 is

M =
(

A A+ I
A+ I 0

)
,

where I is the identity matrix of order nt . We note the following recurrence for the
eigenvalues of the adjacency matrix of Gt . As in the Laplacian case, there is a small
spectral gap of the adjacency matrix.

Theorem 7. [5] Let ρ0(t) ≥ |ρ1(t)| ≥ · · · ≥ |ρn−1(t)| denote the eigenvalues of the
adjacency matrix of Gt . Then

ρ0(t)
|ρ1(t)| = Θ(1).

That is, ρ1(t) ≥ c|ρ0(t)| for some constant c > 0. Theorem 7 is in contrast to the
fact that in G(n, p) random graphs, |ρ1|= o(ρ0) (see [9]).

As shown in Theorem 3, the ILT model has a fixed densification exponent
equalling log3/ log2. A randomized version of the model, where edges are ran-
domly added between new nodes, is presented in [5]. In the randomized model,
the densification exponent is tuneable, and with high probability it generates graphs
with the small world property and bad spectral expansion.
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3.3 Affiliation networks

In [24], a model for social networks was given by first introducing a bipartite model
called affiliation graphs. Paths of length two in the affiliation graphs are folded onto
edges to derive a model for social networks. The central thesis behind using a folded
affiliation network is that friendships between members of social networks arise
from common shared affiliations, such as sharing the same hobby or profession.

More precisely, the model evolves in two stages. First, a bipartite random graph
model B(Q,U) is introduced, with colours Q and U. For instance, Q represents a set
of users, while U represents a set of groups of users. The parameters of the mod-
els are positive integers cq and cu, along with a probability p ∈ (0,1). The model
evolves over discrete time-steps. At time t = 0, the graph B0(Q,U) is a (determin-
istic) bipartite graph with at least cqcu edges, so that each node in Q has degree at
least cq, while each node of U has degree at least cu. At time t > 0, a new node q
is added to Q. A node q′ from Q is chosen proportional to its degree, and cq neigh-
bours of q′ chosen uniformly at random (without replacement) become neighbours
of q. Similarly, a node u is added to U with a similar copying process.

Now to define the (multi)graph G(Q,U), the parameters of the models are pos-
itive integers cq, cu, and s along with a probability p ∈ (0,1). At t = 0, G0(Q,U)
is the set Q in B0(Q,U), and two nodes of Q have an edge between them for each
common neighbour they share in U. At time t > 0 we do the following. With proba-
bility p a new node q is added to Q. The edges of q are determined in B(Q,U), and
edges are added between q and other nodes if they share common neighbours in U.
With probability 1− p, an edge is added between existing nodes q1 and q2 if they
share as a common neighbour the new vertex u in U. A set of s nodes are chosen
independently of each of other, proportionally by degree, and are joined to q.

It is proved in [24] that aas the degree distributions of the graphs generated by
G(Q,U) follows a power law. Further, if cu < p

1−p cq, then aas the graph G(Q,U) is
dense with ω(|Q|) many edges.

For a graph G, let R be the set of node pairs which are connected by a path. For
0 < q < 1, define the q-effective diameter of G to be the minimum d such that, for
at least q|R| of node pairs in R, their distance is at most d. The G(Q,U) exhibits low
distances between nodes as made precise by the following theorem.

Theorem 8. [24] For constants m,q ∈ (0,1), if cu < p
1−p cq, then aas the q-effective

diameter of the graph G(Q,U) is non-increasing.

3.4 The MAG model

In the Multiplicative Attribute Graph (or MAG) model [20], nodes are assigned
a set of attributes represented by a binary vectors. These could be viewed as answer
to yes or no questions about the users interests or background. The MAG model
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accounts for heterophily (that is, love of the same) and homophily (that is, love of the
different). More precisely, the MAG model M(n,r,µ ,Θ) has parameters equalling n
the number of nodes, r the number of attributes of each node, µ the probability that
an attribute takes the value of 1, and Θ the attribute affinity matrix

(
α β
β γ

)
,

where α > β > γ are fixed probabilities in (0,1). We use the notation Θ00 = α,
Θ01 = Θ10 = β , and Θ11 = γ. Each node u is assigned a binary attribute vector a(u)
of length r; we denote the ith entry of a(u) by ai(u). An independent and identically
distributed Bernouilli distribution parameterized by µ is used to model the attribute
vectors, where the probability that the ith attribute of a node is 1 is given by µ . The
probability that nodes u and v are joined is given, independently, by

r

∏
i=1

Θai(u)ai(v).

In particular, the ith entry of attribute vectors ai(u) and ai(v) selects the entry of the
matrix Θ ; for example, if ai(u) = 0 and ai(v) = 0, then Θai(u)ai(u) = α . The product
is then taken of all these entries. If the values on the diagonal of Θ are large, then
the link probability is high when nodes share the same attributes. For instance, the
matrix (

0.9 0.1
0.1 0.8

)

represents homophily, while (
0.2 0.9
0.9 0.1

)

represents heterophily. It is assumed that r = d logn for some constant d (see also
the Logarithmic Dimension Hypothesis in item of (1) of Section 4).

The MAG model generates graphs which satisfy a densification power law.

Theorem 9. [20] The expected number of edges of graphs generated by
M(n,r,µ,Θ) is

n(n−1)
2

(µ2α +2µ(1−µ)β +(1−µ)2γ)r +n(µα +(1−µ)γ)r.

The diameter of MAG graphs is also low.

Theorem 10. [20] If (µβ +(1− µ)γ)d > 1/2, then aas M(n,r,µ,Θ) has constant
diameter.

Under certain assumptions, the MAG model follows a log-normal degree distri-
bution. With more parameters, a variation of the model aas generates graphs whose
degree distribution follows a power law.
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3.5 The GEO-P model

Our next and final model [7] uses both the notions of embedding the nodes in a
metric space (geometric), and a link probability based on a ranking of the nodes
(protean). We identify the users of an OSN with points in m-dimensional Euclidean
space. Each node has a region of influence, and nodes may be joined with a certain
probability if they land within each others region of influence. Nodes are ranked by
their popularity from 1 to n, where n is the number of nodes, and 1 is the highest
ranked node. Nodes that are ranked higher have larger regions of influence, and so
are more likely to acquire links over time. For simplicity, we consider only undi-
rected graphs. The number of nodes n is fixed but the model is dynamic: at each
time-step, a node is born and one dies. A static number of nodes is more representa-
tive of the reality of OSNs, as the number of users in an OSN would typically have
a maximum (an absolute maximum arises from roughly the number of users on the
internet, not counting multiple accounts). For a discussion of ranking models for
complex networks, see [14, 16, 18, 30].

We now formally define the GEO-P model. The model produces a sequence
(Gt : t ≥ 0) of undirected graphs on n nodes, where t denotes time. We write
Gt = (Vt ,Et). There are four parameters: the attachment strength α ∈ (0,1), the
density parameter β ∈ (0,1−α), the dimension m ∈ N, and the link probability
p ∈ (0,1]. Each node v ∈ Vt has rank r(v, t) ∈ [n] (we use [n] to denote the set
{1,2, . . . ,n}). The rank function r(·, t) : Vt → [n] is a bijection for all t, so every
node has a unique rank. The highest ranked node has rank equal to 1; the lowest
ranked node has rank n. The initialization and update of the ranking is done by ran-
dom initial rank (Other ranking schemes may also be used. We use random initial
rank for its simplicity.) In particular, the node added at time t obtains an initial rank
Rt which is randomly chosen from [n] according to a prescribed distribution. Ranks
of all nodes are adjusted accordingly. Formally, for each v ∈Vt−1 that is not deleted
at time t,

r(v, t) = r(v, t−1)+δ − γ,

where δ = 1 if r(v, t− 1) > Rt and 0 otherwise, and γ = 1 if the rank of the node
deleted in step t is smaller than r(v, t−1), and 0 otherwise.

Let S be the unit hypercube in Rm, with the torus metric d(·, ·) derived from the
L∞ metric. More precisely, for any two points x and y in Rm, their distance is given
by

d(x,y) = min{||x− y+u||∞ : u ∈ {−1,0,1}m}.
The torus metric is chosen so that there are no boundary effects.

To initialize the model, let G0 = (V0,E0) be any graph on n nodes that are chosen
from S. We define the influence region of node v at time t ≥ 0, written R(v, t), to be
the ball around v with volume

|R(v, t)|= r(v, t)−α n−β .

For t ≥ 1, we form Gt from Gt−1 according to the following rules.
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1. Add a new node v that is chosen uniformly at random from S. Next, indepen-
dently, for each node u∈Vt−1 such that v∈ R(u, t−1), an edge vu is created with
probability p. Note that the probability that u receives an edge is proportional to
pr(u, t− 1)−α . The negative exponent guarantees that nodes with higher ranks
(r(u, t−1) close to 1) are more likely to receive new edges than lower ranks.

2. Choose uniformly at random a node u ∈ Vt−1, delete u and all edges incident to
u.

3. Node v obtains an initial rank r(v, t) = Rt which is randomly chosen from [n]
according to a prescribed distribution.

4. Update the ranking function r(·, t) : Vt → [n].

Since the process is an ergodic Markov chain, it will converge to a stationary dis-
tribution. (See [28] for more on Markov chains.) The random graph corresponding
to this distribution with given parameters α,β ,m, p is called the geo-protean graph
(or GEO-P model), and is written GEO-P(α,β ,m, p).

Let Nk = Nk(n, p,α,β ) denote the number of nodes of degree k, and N≥k =
∑l≥k Nl . The following theorem demonstrates that the geo-protean model generates
power law graphs with exponent

b = 1+1/α. (2)

Note that the variables N≥k represent the cumulative degree distribution, so the de-
gree distribution of these variables has power law exponent 1/α .

Theorem 11. [7] Let α ∈ (0,1), β ∈ (0,1−α), m ∈ N, p ∈ (0,1], and

n1−α−β log1/2 n≤ k ≤ n1−α/2−β log−2α−1 n.

Then aas GEO-P(α,β ,m, p) satisfies

N≥k =
(
1+O(log−1/3 n)

) α
α +1

p1/α n(1−β )/α k−1/α .

Geo-protean graphs are relatively dense.

Theorem 12. [7] Aas the average degree of GEO-P(α ,β ,m, p) is

d = (1+o(1))
p

1−α
n1−α−β . (3)

Note that the average degree tends to infinity with n; that is, the model generates
graphs satisfying a densification power law. While the diameter is not shrinking, it
can be made constant by allowing the dimension to grow as a logarithmic function
of n.

Theorem 13. [7] Let α ∈ (0,1), β ∈ (0,1−α), m ∈N, and p ∈ (0,1]. Then aas the
diameter D of GEO-P(α,β ,m, p) satisfies

D = Ω(n
β

(1−α)m log
−α
m n), and D = O(n

β
(1−α)m log

2α
(1−α)m n). (4)
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In particular, aas the order of the diameter can be expressed as:

logD =
β

(1−α)m
logn+O

(
log logn

m

)
.

If m = C logn, for some constant C > 0, then aas we obtain a diameter bounded
above by a constant.

Aas the GEO-P model, for some values of m, generates graphs with higher clus-
tering coefficient than in a random graph G(n,d/n) with the same expected average
degree. We use the notation bxc2 to denote the largest even integer smaller than or
equal to x.

Theorem 14. [7] Aas the clustering coefficient of G sampled from GEO-P(α,β ,m, p)
satisfies the following inequality

c(G) ≥ (1+o(1))
(

3
4

(
1− 2

3K

))m (
1−α
1+α

)
p

= (1+o(1))exp
(
− f

(m
K

))(
3
4

)m (
1−α
1+α

)
p,

where f (m
K ) = Θ(m

K ), and

K =


(

n1−α−β

log3 n

)1/m


2

.

Note that if

m≤ (1−α−β )
logn

log logn

(
1− 1

loglogn

)
= (1+o(1))(1−α−β )

logn
log logn

,

then K À m, and the clustering coefficient of GEO-P(α ,β ,m, p) is aas at least

(1+o(1))
(

3
4

)m (
1−α
1+α

)
p = no(1) À (1+o(1))

p
1−α

n−α−β = c(G(n,d/n)).

Hence, the clustering coefficient is larger than that of a comparable random graph.
The next theorem represents a drastic departure from the good expansion found

in binomial random graphs, where λ = o(1) [9, 10].

Theorem 15. [7] Let α ∈ (0,1), β ∈ (0,1−α), m ∈ N, and p ∈ (0,1]. Let λ (n) be
the spectral gap of the normalized Laplacian of GEO-P(α,β ,m, p). Then aas

1. If m = m(n) = o(logn), then λ (n) = 1+o(1).
2. If m = m(n) = C logn for some C > 0, then

λ (n)≥ 1− exp
(
−α +β

C

)
.
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Given an OSN, we describe how we may estimate the corresponding dimension
parameter m if we assume the GEO-P model. In particular, if we know the order
n, power law exponent b, average degree d, and diameter D of an OSN, then we
can calculate m using our theoretical results. Formula (2) gives an estimate for α
based on the power law exponent b. If d∗ = logd/ logn, then equation (3) implies
that, asymptotically, 1−α − β = d∗. If D∗ = logD/ logn, then formula (4) about
the diameter implies that, asymptotically, D∗ = β

(1−α)m . Thus, an estimate for m is
given by:

m =
1

D∗

(
1−

(
b−1
b−2

)
d∗

)
=

logn
logD

(
1−

(
b−1
b−2

)
logd
logn

)
. (5)

This estimate suggests that the dimension is proportional to logn/ logD. If D
is constant, then this means that m grows logarithmically with n. Recall that the
dimension of an OSN may be roughly defined as the least integer m such that we
can accurately embed the OSN in m-dimensional Euclidean space. Based on our
model we conjecture that the dimension of an OSN is best fit by approximately
logn.

The parameters b, d, and D have been determined for samples from OSNs in
various studies such as [2, 19, 23, 32]. The following chart summarizes this data
and gives the predicted dimension for each network. We round m up to the nearest
integer. Estimates of the total number of users n for Cyworld, Flickr, and Twitter
come from Wikipedia [40], and those from YouTube comes from their website [41].
When the data consisted of directed graphs, we took b to be the power law exponent
for the in-degree distribution. As noted in [2], the power law exponent of b = 5 for
Cyworld holds only for users whose degree is at most approximately 100. When
taking a sample, we assume that some of the neighbours of each node will be miss-
ing. Hence, when computing d∗, we used n equalling the number of users in the
sample. As we assume that the diameter of the OSN is constant, we compute D∗
with n equalling the total number of users.

Parameter OSN
Cyworld Flickr Twitter YouTube

n 2.4×107 3.2×107 7.5×107 3×108

b 5 2.78 2.4 2.99
d∗ 0.22 0.17 0.17 0.1
D∗ 0.11 0.19 0.1 0.16
m 7 4 5 6

3.5.1 The GEO-P Tension model

A variant of the GEO-P model was presented in [35] that warrants further study. In
the GEO-P model, if a node v falls in an influence region of of two nodes u1 and u2,
then v can join to u1 and u2 with equal probability. We consider a variant where the
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probability depends on the volume of the corresponding influence regions. Consider
a fixed tension parameter h ∈ (−∞,0). For a given t ≥ 0 and vertex u, define

T (u, t) = r(u, t)h.

Given two nodes u and v, define

T (u,v, t) =
T (u, t)+T (v, t)

2
.

The definition of the GEO-P Tension model is analogous to the GEO-P model, but
at time t > 0, independently, for each node u ∈ Vt−1 such that v ∈ R(u, t − 1), an
edge vu is created with probability pT (u,v, t). Hence, if v is in the influence region
of both u1 and u2 with the rank of u1 higher than u2, then it is more likely to join to
u1.

Preliminary simulation results indicate that the GEO-P Tension model captures
many of the properties of OSNs described in Section 2. Figures 2, 3 and 4 display
the log-log plots of the degree distribution of graphs of order 7115 simulated by the
GEO-P Tension model in dimensions 1 to 5 inclusive. We set the tension parameter
h = −0.1,−0.3 and− 0.7, respectively. Tables 1 and 2 list the diameters (where
|V (C)| is the order of the largest connected component) and spectral gaps (with
respect to the adjacency matrix) of the corresponding graphs.
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Fig. 2 Degree distribution of graph generated by the GEO-P Tension model, h =−0.1.

For the GEO-P(Ten) model, it remains to rigorously prove the properties outline
in Section 2.
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Fig. 3 Degree distribution of graph generated by the GEO-P Tension model, h =−0.3.
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Fig. 4 Degree distribution of graph generated by the GEO-P Tension model, h =−0.7.

Table 1 Spectral gaps of graphs generated by the GEO-P(Ten) model, in dimensions 1 to 5 inclu-
sive.

GEO-P(Ten) N = 7115, α = 0.7, β = 0.15, p = 1
h =−0.1 h =−0.3 h =−0.7

dim gap dim gap dim gap
1 14.170589 1 9.048678 1 13.048242
2 0 2 9.286437 2 12.406163
3 11.410871 3 10.354512 3 13.150765
4 15.54475 4 10.186001 4 14.226928
5 20.845548 5 12.422439 5 15.133812
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Table 2 Diameters of graphs generated by the GEO-P(Ten) model.

GEO-P(Ten) N = 7115, α = 0.7, β = 0.15, p = 1
h =−0.1 h =−0.3 h =−0.7

dimension diam |V (C) | diam |V (C) | diam |V (C) |
1 20 7098 6 6300 4 2673
2 20 6953 7 3149 4 990
3 20 6847 7 1648 3 571
4 15 6744 6 1152 3 415
5 12 6747 5 977 2 428

4 Open problems

Many questions remain in modelling OSNs and other complex networks. We collect
these here for future reference.

1. The Logarithmic Dimension Hypothesis (or LDH) [7] conjectures that the dimen-
sion of an OSN is best fit by about logn, where n is the number of users in the
OSN. The motivation for the conjecture comes from both the GEO-P and MAG
models. Both models posit logn attributes for each user so as to provably ensure
that certain properties found in OSNs (such as constant diameter and bad spectral
expansion) are satisfied. Given the availability of OSN data, it may be possible
to fit the data to the model to determine the dimension of a given OSN. Initial
estimates in [35] from sampled OSN data indicate that the spectral gap found
in OSNs correlates with the spectral gap found in the GEO-P model when the
dimension is approximately logn, giving some additional credence to the LDH.
See also the MAG model as discussed in Subsection 3.4.

2. Another interesting direction would be to generalize the GEO-P to a wider array
of ranking schemes (such as ranking by age or degree), and determine when
similar properties (such as power laws and bad spectral expansion) provably aas
hold. Simulations with the GEO-P Tension model show promising data [35],
but the rich dependence structure of this model may make rigorous analysis a
challenge.

3. As discussed in Section 2, the recent work [8] indicates that social networks lack
high compressibility, especially in contrast to the web graph. Note that property
(v) bad compressibility has not been explicitly studied in any of the models pre-
sented here. It would be interesting to study compressibility in these models, and
to devise a model which provably has all five properties.

4. Anecdotal evidence from everyday experience with Twitter and Facebook shows
that news and gossip spread quickly in such networks. An epidemiological
model, such as SIS or SIRS, or even a deterministic model such as firefighting
and seepage [6] would be worth exploring in real OSN data and in the models.
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