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Abstract. A graph has the neighbour-closed-co-neighbour, or
ncc property, if for each of its vertices x, the subgraph induced by
the neighbour set of x is isomorphic to the subgraph induced by the
closed non-neighbour set of x. As proved by Bonato, Nowakowski
[5], graphs with the ncc property are characterized by the exis-
tence of perfect matchings satisfying certain local conditions. In
the present article, we investigate the spanning subgraphs of ncc
graphs, which we name sub-ncc. Several equivalent characteriza-
tions of finite sub-ncc graphs are given, along with a polynomial
time algorithm for their recognition. The infinite sub-ncc graphs
are characterized, and we demonstrate the existence of a countable
universal sub-ncc graph satisfying a strong symmetry condition
called pseudo-homogeneity.

1. Introduction

All the graphs in this article are undirected and simple. The infinite
random graph R is the unique isomorphism type of countably infinite
graph satisfying the existentially closed or e.c. adjacency property: for
all finite sets of vertices X and Y, there is vertex not in X ∪ Y that is
joined to each vertex of X and to no vertex of Y. The graph R derives
its name from the fact that with probability 1, a countably infinite
graph with edges chosen independently and with fixed probability is
e.c. The graph R exhibits many remarkable graph-theoretic, algebraic,
and topological properties as documented in the surveys of Cameron
[8, 9]. Let N(x) and N c(x) denote the set of neighbours and non-
neighbours (not including x) of a vertex x, respectively. A graph G has
property (N ) if the subgraph induced in G by N(x) is isomorphic to G;
property (N c) is defined similarly. It is not hard to show using the e.c.
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property that R has both properties (N ) and (N c). However, it is an
open problem to determine if there are countably infinite graphs non-
isomorphic to R with both properties (N ) and (N c); see Problem 411
in [10].

The properties (N ) and (N c) are examples of vertex partition or
fractal-type properties which are usually studied in the context of infi-
nite graphs. Other vertex partition properties that have been studied
include the pigeonhole property [2, 4], inexhaustibility [3, 6], and indi-
visibility [13, 14].

The following analogue of (N ) and (N c) for finite graphs was in-
troduced by Nowakowski and the author in [5]. We use the notation
G ¹ S for the subgraph of G induced by a set of vertices S, and the
notation G ∼= H for isomorphic graphs. The closed non-neighbour set
of x, written N c[x], is the set of non-neighbours of x, including x itself.
A graph G has the neighbour-closed-co-neighbour or ncc property, if
for all x ∈ V (G), G ¹ N(x) ∼= G ¹ N c[x]. There are many examples
of such graphs, including the bipartite cliques Kn,n and the Cartesian
products of cliques with K2, written Kn2K2. A similar but unrelated
property of neighbourhood symmetry was introduced by Froncek [16].

A disjoint neighbour perfect or dnp matching M is a perfect matching
with the additional property that if e = ab ∈ M, then N(a)∩N(b) = ∅;
we say the edge ab is dn. For example, every perfect matching in a
bipartite graph is dnp, and there is a unique dnp matching in Kn2K2.
The following characterization of the ncc graphs was given in [5].

Theorem 1. A finite graph G is ncc if and only if there is a positive
integer n so that the order of G is 2n, G is n-regular, and G has a dnp
matching.

As a corollary of Theorem 1, it was shown in [5] that the ncc graphs
may, perhaps surprisingly, be recognized in polynomial time. Another
characterization of ncc graphs will be useful. A graph G has a locally
C4 perfect matching if G has a perfect matching M with the property
that every pair of distinct edges of M induce a 4-cycle.

Theorem 2. A finite graph G is ncc if and only if it has a locally C4

perfect matching.

Proof. If G is ncc, then by Theorem 1 there is some positive integer n
so that G is n-regular and has a dnp matching M . If ab ∈ M , then it
follows that N(b) = N c[a] and N(a) = N c[b]. Therefore, M is a locally
C4 perfect matching.

Conversely, if G has a locally C4 perfect matching M , then M is
clearly dnp. If ab ∈ M , then for all x ∈ V (G), x is joined to exactly
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one of a or b. Hence, if M contains n edges, then G is n-regular. Hence,
G is ncc by Theorem 1. ¤

The following theorem of [5] proves that the class of all induced
subgraphs of ncc graphs is not interesting.

Theorem 3. If G is a graph of order n, then G is isomorphic to an
induced subgraph of an ncc graph of order at most 2n.

When studying a graph property, it is often useful to consider the
class of spanning subgraphs of graphs with the property. An example
of this is the rich theory of partial k-trees, which are spanning sub-
graphs of k-trees. A different situation emerges if we consider spanning
subgraphs of ncc graphs, which we refer to as sub-ncc. For example,
a balanced bipartite graph (that is, one where the two vertex classes
have the same cardinality) is sub-ncc, while a clique with at least three
vertices is not.

The goal of the present article is to investigate the sub-ncc graphs.
Several equivalent characterizations of finite sub-ncc graphs are given
in Theorem 5. With the aid of Theorem 5, we present a polynomial
time algorithm for the recognition of sub-ncc graphs; see Corollary 10.
We introduce a new graph parameter, the dn number, which measures
in a sense how close a graph is to being sub-ncc. A polynomial time
algorithm to compute the dn number of a graph is given in Theorem 12.

The infinite sub-ncc graphs are characterized in Theorem 13. This
theorem is applied to prove the existence of a countable sub-ncc graph
M containing all the countable sub-ncc graphs as induced subgraphs,
and satisfying strong symmetry conditions. The graph M is the so-
called universal pseudo-homogeneous sub-ncc graph; see Theorem 14.

2. The structure of sub-ncc graphs

All graphs in this and the next section are finite. Theorem 5 of this
section characterizes the finite sub-ncc graphs. Before this result can
be stated, a few definitions are required.

A pairing P is a set of 2-element subsets of V (G) called pairs, so
that if p and p′ are distinct pairs of G, then p∩ p′ = ∅. In particular, a
pairing is a matching if each pair forms an edge of the graph. Trivially,
all even order graphs have a pairing containing all vertices. A dnp
pairing is a pairing P with the following properties:

(1) for all x ∈ V (G), there is a pair p ∈ P so that x ∈ p;
(2) for all p = {a, b} ∈ P, N(a) ∩N(b) = ∅.

We call {a, b} ∈ P a dn pair. An ncc graph, a triangle-free graph with
a perfect matching, or a balanced bipartite graph have dnp pairings.
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An odd order graph, or a graph of order 2n whose maximum degree is
strictly greater than n do not have dnp pairings.

A graph G satisfies the weak ncc property if for all x ∈ V (G) there
are subsets of vertices A(x), B(x) partitioning V (G) so that

(A) the vertex x is isolated in G ¹ A(x), and there is a bijection
fx : A(x) → B(x) with fx(x) is isolated in G ¹ B(x);

(B) for all x, y ∈ V (G),

fx(x) =

{
fy(x) if x ∈ A(y);
f−1

y (x) if x ∈ B(y).

The name of this property derives in part from the following lemma.

Lemma 4. If G is a finite ncc graph, then G has the weak ncc property.

Proof. Let G be ncc with a dnp matching {aibi : 1 ≤ i ≤ n}. Theorem 2
implies that the mapping

M : G ¹ {ai : 1 ≤ i ≤ n} → G ¹ {bi : 1 ≤ i ≤ n}
defined by M(ai) = bi is an isomorphism. For all x ∈ V (G), let A(x) =
N c[x] and B(x) = N(x). By Theorem 2, for all i ∈ {1, . . . n} and
x ∈ V (G),

(2.1) ai ∈ N c[x] if and only if bi ∈ N(x).

For all x ∈ V (G), define fx : A(x) → B(x) by

fx(z) =

{
M(z) if z ∈ A(x) ∩ {ai : 1 ≤ i ≤ n};
M−1(z) if z ∈ A(x) ∩ {bi : 1 ≤ i ≤ n}.

For a fixed x ∈ V (G), the function fx is a well-defined bijection by
(2.1), and is an isomorphism by Theorem 2. Hence, condition (A)
holds in the definition of the weak ncc property. For condition (B),
suppose that x = ai for some i (the case when x = bi is similar, and so
is omitted). Fix y ∈ V (G) \ {x}. If x ∈ A(y), then fx(x) = bi = fy(x).
If x ∈ B(y), then fx(x) = bi = fy

−1fy(bi) = fy
−1(x). ¤

If G is a graph, then define G−4 to be spanning subgraph of G formed
by deleting each edge of every K3 in G. A Tutte set in G is a set T
of vertices so that the number of odd order connected components of
G− T has cardinality strictly greater than |T |.
Theorem 5. The following are equivalent for a graph G of order n.

(1) The graph G is sub-ncc.
(2) The graph G has the weak ncc property.
(3) At most n edges may be added to G to obtain a dnp matching.
(4) At most n edges may be added to G−4 to obtain a perfect match-

ing.
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(5) At most n edges may be added to G−4 so the resulting graph
has no Tutte set.

(6) The graph G has a dnp pairing.

Proof. (1 ⇒ 2) Let G be a spanning subgraph of some ncc graph H.
For x ∈ G, let A(x) = N c[x] in H, and let B(x) = N(x) in H. Define
fx : N c[x] → N(x) in H as in the proof of Lemma 4. Then fx : A(x) →
B(x) in G is a bijection. For (A) in G, note that x is isolated in A(x),
and fx(x) is isolated in B(x), as an isolated vertex of H is also isolated
in G. The proof of (B) follows as in the proof of Lemma 4.

(2 ⇒ 3) Fix x ∈ V (G), and let x′ = fx(x). By item (A) for G, {x, x′}
is a dnp pair. Delete the vertices x and x′ and all edges incident with
either x or x′ to form the induced subgraph G′. We claim that G′ has
the weak ncc property. To see this, note that by item (B) for G, for all
vertices y, exactly one of x and x′ is in each of A(y) and B(y). Suppose
that x ∈ A(y) and x′ ∈ B(y) (the case when x ∈ B(y) and x′ ∈ A(y)
is similar and so is omitted). In G′, define A′(y) to be A(y)\{x} and
B′(y) = B(y)\{x′}.

For all vertices y, define f ′y : A′(y) → B′(y) to be the restriction of
fy to A′(y). This map is well-defined since by (B) fy(x) = x′. Since fy

is a bijection, the map f ′y is a bijection. Further, y is isolated in A′(y)
and fy(y) is isolated in B′(y). Hence, (A) holds for G′. For (B), fix
z ∈ V (G′)\{y}. Suppose first that z ∈ A(y). As fz(z) 6= x, x′, we have
that

f ′z(z) = fz(z) = fy(z) = f ′y(z),

where the second equality follows by (B) for G. If z ∈ B(y), then

f ′z(z) = fz(z) = fy
−1(z) = f ′y

−1
(z),

where the second equality holds by (B) for G.
By induction, we obtain a dnp pairing P of G. We may therefore

add at most n edges to P to obtain a dnp matching, so item (3) of the
statement of the theorem follows.

The proof that (3 ⇔ 4) follows since a dnp matching in G is equiv-
alent to perfect matching in G−4. The proof of (4 ⇔ 5) follows by a
theorem of Tutte [19] which states that a graph has a perfect matching
if and only if it has no Tutte set. The proof of (3 ⇒ 6) is immediate.

(6 ⇒ 1) Let P = {{ai, bi} : 1 ≤ i ≤ n} be a dnp pairing of G.
Let G′ be the graph formed by adding the edges aibi if necessary, so P
becomes a dnp matching M in G′. Let H be an edge maximal spanning
subgraph of K2n containing G′ so that no edge of M in H is in a K3.
The proof will follow once we show that H is ncc. To see this, since M
is a dnp matching in H, by Theorem 2, it is enough to verify that M
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has the property that for all i if aibi ∈ M, then N c(ai) ∩ N c(bi) = ∅.
Suppose otherwise, and without loss of generality there is an i and j
so that bj ∈ N c(ai)∩N c(bi). If aiaj ∈ E(H), then by maximality of H
and the fact that M is dnp, we must have that bibj ∈ M, which is a
contradiction. If aiaj /∈ E(H), then add aibj to H to form H ′. In H ′,
the matching M is dnp, which is a contradiction of the maximality of
H. ¤

Theorem 5 provides some insight into the class of sub-ncc graphs.
For instance, “most” finite graphs are not sub-ncc. For background on
random graphs, the reader is directed to [1]. Almost no G ∈ G(n, p)
has a graph property P if the probability that P holds for G tends to 0
as n tends to ∞. The term “almost all” is defined in a similar fashion.

Corollary 6. (1) If G has diameter 2 and has the property that
every edge is in a K3, then G is not sub-ncc.

(2) For a fixed p ∈ (0, 1), almost no G ∈ G(n, p) is sub-ncc.

Proof. Item (1) follows since G has no dn pair. Item (2) follows from
item (1), since it is well known that almost all G ∈ G(n, p) are diameter
2 and have the property that each edge is in a triangle. ¤

If G and H are graphs, then we write the Cartesian product of G
and H as G2H, the categorical product of G and H as G×H, and the
strong product of G and H as G £ H. Information on these and other
products may be found in Imrich, Klavzar [17]. The disjoint union of
graphs G and H is written G + H.

The example with G = H ∼= K2 demonstrates that G £ H need not
satisfy the sub-ncc property even if both G and H do. However, the
Cartesian and categorical products do preserve the sub-ncc property.

Corollary 7. Let G and H be finite graphs.

(1) If G and H are sub-ncc, then G + H is sub-ncc.
(2) If G is sub-ncc and H is any graph, then both G2H and G×H

are sub-ncc.
(3) If G is a graph of order n, then G+Kn is sub-ncc. In particular,

every graph G is the induced subgraph of a sub-ncc graph with
the same clique and chromatic number of G.

Proof. Item (1) is immediate from Theorem 5. If G has a dnp pairing
{{ai, bi} : 1 ≤ i ≤ n}, then it is not hard to see that the set

{{(ai, x), (bi, x)} : 1 ≤ i ≤ n, x ∈ V (H)}
is a dnp pairing of both G2H and G × H. Hence, item (2) follows
from Theorem 5. For item (3), a dnp pairing is formed by pairing each
vertex of G with a unique vertex of Kn. ¤
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Let G be a connected graph. Define e(x) to be the set of vertices of G
which are of even distance to x (including x, which we take as distance
0 from itself). Define o(x) to be the set of vertices of G which are of
odd distance to x. The graph G has the ncc-parity property if for all
x ∈ V (G), the subgraph induced by e(x) is isomorphic to the subgraph
induced by o(x). For example, ncc graphs are ncc-parity, since they are
diameter 2. Any connected balanced bipartite graph is ncc-parity.

A problem posed in [5] was to give a characterization of the ncc-
parity graphs. (In [5], the ncc-parity graphs were referred to as ncc(e)
graphs.) This problem remains open, but the following holds.

Theorem 8. Every finite ncc-parity graph is sub-ncc.

Proof. Let G be an ncc graph of order 2n, where n is a fixed positive
integer, and let x be a vertex of G. The vertex x is isolated in G ¹ e(x).
Since G ¹ e(x) ∼= G ¹ o(x), there are the same number, say kx many,
of isolated vertices in G ¹ e(x) and G ¹ o(x). Let {xi : 1 ≤ i ≤ kx} and
{yi : 1 ≤ i ≤ kx} be the set of isolated vertices in G ¹ e(x) and G ¹ o(x),
respectively. Note that {xi, yi} is a dnp pair for all 1 ≤ i ≤ kx.

Define

Px = {{xi, yi} : 1 ≤ i ≤ kx},
and define Pxi

= Pxj
= Pyi

= Pyj
, for all 1 ≤ i, j ≤ kx. Proceed

inductively to define

P =
⋃

z∈V (G)

Pz.

The set P is a dnp pairing. To see that P is a pairing, suppose to
the contrary that there are two pairs {x, y} and {x, y′} in P. But then
y and y′ are in the set {yi : 1 ≤ i ≤ kx}. But x is paired with a unique
element of {yi : 1 ≤ i ≤ kx}. The pairing P is dnp by construction.
The proof now follows by Theorem 5. ¤

3. Recognizing sub-ncc graphs

Theorem 5 may be used to give a polynomial time algorithm for
recognizing sub-ncc graphs.

Algorithm for recognizing sub-ncc graphs
Input : A graph G.
Output : YES if G is sub-ncc, NO otherwise.

(1) If |V (G)| is odd, then output NO. Otherwise, say |V (G)| = 2n
for some positive integer n and proceed to (2).
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(2) For each edge e = ab of G, if N(a)∩N(b) 6= ∅, then give e weight
2. Otherwise, give e weight 1. For each non-edge consisting of
vertices a, b of G, if N(a) ∩ N(b) 6= ∅ in G, then add the edge
e = ab to G and give e weight 2. Otherwise, add the edge e = ab
and give it weight 1. Let K∗

2n be the resulting edge-weighted
clique.

(3) Determine if K∗
2n has a perfect matching of weight n. If there is

such a matching, then return YES. If K∗
2n has no such matching,

then return NO.

The proof of the validity of this algorithm relies on the following
Theorem.

Theorem 9. A graph G of order 2n is sub-ncc if and only if K∗
2n has

a perfect matching of weight n.

Proof. Suppose first that G is sub-ncc. By Theorem 5, G has a dnp
pairing P. But then in K∗

2n, P is a perfect matching of weight n. Con-
versely, suppose that K∗

2n has a perfect matching M of weight n. Since
some edges of M may be deleted in passage from K∗

2n back to G, M is
a pairing P in G. Since each edge of M is weight 1, P is a dnp pairing
in G. ¤
Corollary 10. Recognizing whether a finite graph is sub-ncc may be
done in polynomial time.

Proof. The construction of K∗
2n from G may be done in polynomial

time. A minimum weight perfect matching in graph with positive in-
teger edge weights may be found in polynomial time by the results of
Edmonds [12]. The proof now follows by Theorem 5 since a minimum
weight perfect matching in K∗

2n must have weight n. ¤
We introduce a strengthening of the above algorithm, which, in a

certain sense, computes how far a graph is from having an dnp pairing.
A dn pairing is a pairing satisfying item (2) in the definition of dnp
pairing. Define the dn pairing number of G, written dn(G), to be the
cardinality of a dn pairing in G with the maximum number of pairs. For
example, a graph G with 2n vertices is sub-ncc if and only if dn(G) = n.
A graph G has dn(G) = 0 if and only if G is diameter 2 and every edge
of G is contained in a K3.

There are examples to demonstrate that dn(G) may obtain any value
in {0, 1, . . . , ⌊n

2

⌋}. Fix n ≥ 2, and let 1 ≤ j ≤ ⌊
n
2

⌋
be fixed. Define a

graph K(n, j) by joining j endvertices to some fixed set of j distinct
vertices in Kn−j. Then dn(K(n, j)) = j, since a dn pair must have at
least one element not in Kn−j.
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Algorithm for computing dn(G)
Input : A graph G with n vertices.
Output : dn(G).

(1) Add edges to distinct non-joined vertices of G. Assign the
weight ε = 1

n+1
to all edges xy so that N(x) ∩ N(y) 6= ∅ in

G. Assign the weight 1 to all edges xy so that N(x)∩N(y) = ∅
in G. Let K∗

n be the resulting edge-weighted clique.
(2) Find a maximum weight matching M in K∗

n. The sum of weights
of edges in M is written wt(M). If bwt(M)c = j, then output
dn(G) = j.

The following theorem proves the validity of this algorithm.

Theorem 11. The finite graph G has dn(G) = j if and only if all
maximum weight matchings of K∗

n have weight of the form j+kε, where
j and k are integers satisfying 0 ≤ j, k ≤ ⌊

n
2

⌋
and j + k =

⌊
n
2

⌋
.

Proof. Note that the any maximum weight matching M of K∗
n is per-

fect, or near-perfect: all vertices but one are matched (the latter case
occurs only if n is odd). Otherwise, add edges to M to obtain a match-
ing with larger weight. Hence, if wt(M) = j+kε, where 0 ≤ j, k ≤ ⌊

n
2

⌋
,

then j + k =
⌊

n
2

⌋
.

Let dn(G) = j, and suppose M is a maximum weight matching of
K∗

n with weight j′+k′ε, with 0 ≤ j′, k′ ≤ ⌊
n
2

⌋
, and j′+k′ =

⌊
n
2

⌋
. If P is

a dn pairing in G with j pairs, then in K∗
n the pairing P corresponds to

a matching with weight j that may be enlarged to a maximum weight
perfect matching with weight at least j + kε, where 0 ≤ j, k ≤ ⌊

n
2

⌋
,

and j + k =
⌊

n
2

⌋
. Hence, wt(M) ≥ j + kε.

Suppose that j′ < j. Hence, k′ > k. Then by the maximality of
M ′, j + kε ≤ j′ + k′ε, which implies that j − j′ ≤ (k′ − k)ε. Thus,
(k′ − k)ε ≥ 1, which contradicts the choice of ε. Therefore, j′ ≥ j.
Observe that for all possible values of k′, k′ε < 1. Hence, M has exactly
j′ many edges of weight 1. Now if j′ > j, then the j′ many weight 1
edges of M correspond to j′ many dn pairs in G, which contradicts
that dn(G) = j. Hence, j = j′, and so k = k′. As M was arbitrary, the
forward direction follows.

For the reverse direction, assume that a maximum weight matching
M of K∗

n has weight j+kε, where 0 ≤ j, k ≤ ⌊
n
2

⌋
and j+k =

⌊
n
2

⌋
. From

the proof of the forward direction, we obtain that dn(G) ≥ j. Suppose
for a contradiction that dn(G) = j′ > j. As in the proof of the forward
direction, we may then obtain a maximum weight perfect matching
with weight j′ + k′ε, with 0 ≤ j′, k′ ≤ ⌊

n
2

⌋
and j′ + k′ =

⌊
n
2

⌋
. As
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j′+k′ε > j+kε for all possible values of k and k′, this is a contradiction.
Hence, dn(G) = j. ¤
Corollary 12. The dn number of a finite graph may be found in poly-
nomial time.

Proof. The construction of K∗
n from G may be done in polynomial

time. A maximum weight matching in K∗
n may be found in polynomial

time, since this may be reduced to a minimum weight perfect matching
problem; see Section 5.3 of Cook et al. [11]. The proof now follows by
Theorem 11. ¤

4. The infinite case

We next characterize infinite sub-ncc graphs via dnp pairings. Note
first that the definitions of ncc and sub-ncc graphs, and dnp pairings
apply equally to graphs of finite or infinite order.

Theorem 13. Let α be an infinite cardinal. A graph G of order α is
sub-ncc if and only if it has a dnp pairing.

Proof. Let G be a spanning subgraph of some ncc graph H with |V (H)| =
α. We prove that H has a dnp pairing. The forward direction will then
follow since the property of having a dnp pairing is preserved by taking
spanning subgraphs. Let x be a vertex of G. As G ¹ N c[x] ∼= G ¹ N(x),
the set of isolated vertices in G ¹ N c[x] has the same cardinality as
the set of isolated vertices in G ¹ N(x). Let {xi : 1 ≤ i ≤ βx} and
{yi : 1 ≤ i ≤ βx} be the set of isolated vertices in G ¹ N c[x] and
G ¹ N(x), respectively, where βx ≤ α is a cardinal.

Define

Px = {{xi, yi} : 1 ≤ i ≤ βx},
and define Pxi

= Pxj
= Pyi

= Pyj
, for all 1 ≤ i, j ≤ βx. Define

P =
⋃

z∈V (H)

Pz.

The proof that P is a dnp pairing is similar to the last paragraph of
the proof of Theorem 8, and so is omitted.

For the converse let G have a dnp pairing P = {{xi, yi} : 1 ≤ i ≤ α}.
Add edges, if necessary, to form the graph G′, where xiyi ∈ E(G′) for
all 1 ≤ i ≤ α. Define H to be a maximal subgraph of Kα subject to
the conditions that no edge xiyi is in a subgraph isomorphic to K3 (the
existence of H follows by Zorn’s lemma). The matching M = {xiyi :
1 ≤ i ≤ α} is a locally C4 perfect matching in H. It is straightforward
to verify that any graph with a locally C4 perfect matching is ncc. ¤
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As a side remark, it is an open problem of [5] to characterize in-
finite ncc graphs. As noted in the proof of the reverse direction of
Theorem 13, if a graph (of any cardinality) has a locally C4 perfect
matching, then it is ncc.

We now consider countable ncc graphs. Let K be a class of finite
graphs closed under isomorphisms. The class K has the amalgamation
property, written (AP), if it satisfies the following. For graphs A, B,
and C in K, for any isomorphism f from A onto an induced subgraph
of B, and any isomorphism g from A onto an induced subgraph of C,
there is a graph D in K, an isomorphism f ′ from B onto an induced
subgraph of D and an isomorphism g′ from C onto an induced subgraph
of D, so that for all vertices x of A, (f ′f)(x) = (g′g)(x). The graph D
is referred to as an amalgam of B and C over A. Informally, D results
by gluing B and C over A, possibly by making some identifications.

The class of all finite graphs has (AP): choose D to be the graph
B ∪ C that has vertices V (B) ∪ V (C) and edges E(B) ∪ E(C). Many
otherwise favorable classes of finite graphs, such as the class of bipar-
tite graphs, do not have (AP), however. The class K has the joint
embedding property or (JEP) if for every pair B and C in K, there is a
D ∈ K so that B and C are induced subgraphs of D. (If graphs with
no vertices are allowed, then (JEP) is a special case of (AP).)

Let C be a class of countable graphs closed under isomorphisms and
closed under taking induced subgraphs, and let C ′ ⊆ C. A graph M ∈ C ′
is universal pseudo-homogeneous for C ′ if each of the following condi-
tions hold.

(PH1) Each finite graph in C is isomorphic to an induced subgraph of
M .

(PH2) Let A be a finite induced subgraph of M . Then there is an
induced subgraph B of M such that B ∈ C ′ and V (A) ⊆ V (B).

(PH3) Let A ∈ C ′ be a finite induced subgraph of M, and let B ∈ C ′
contain A as an induced subgraph. Then there is an induced
subgraph B′ of M containing A as an induced subgraph, and
an isomorphism β : B → B′ which is the identity on A.

It can be shown that M is the unique (up to isomorphism) count-
able graph in C ′ with properties (PH1), (PH2), and (PH3). Pseudo-
homogeneous graphs and relational structures were first investigated
by Calais [7], and Fräıssé discussed them in Chapter 11 of [15]. As
proved in Section 6.6 of [15], a universal pseudo-homogeneous graph
exists in C if and only if C ′ satisfies (AP) and (JEP), and C and C ′
satisfy the following cofinality condition:
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(C) For each finite A ∈ C, there is a finite B ∈ C ′ so that A is
isomorphic to an induced subgraph of B.

The class C is called a pseudo-amalgamation class relative to C ′.
The infinite random graph R mentioned in the Introduction is univer-
sal pseudo-homogeneous with C = C ′ being the class of all countable
graphs. The graph R is in fact homogeneous : every isomorphism be-
tween induced subgraphs extends to an automorphism. All countable
homogeneous graphs have been classified by Lachlan, Woodrow [18].
None of these, however, are universal pseudo-homogeneous graphs for
the class of sub-ncc graphs. For example, the graph R is not sub-ncc,
since it is diameter 2 and each edge of R is in a K3.

Theorem 14. Let C be the class of all finite graphs, and let C ′ be the
class of sub-ncc graphs. The class C is a pseudo-amalgamation class
relative to the class C ′. Hence, there is a unique isomorphism type of
universal pseudo-homogeneous countable sub-ncc graph M.

Proof. We prove that C ′ has (JEP), (AP), and (C). The class C ′ has
(JEP) by Corollary 7 (1), since if B and C are sub-ncc, then so is
D = B + C. For (AP), let A, B, and C be sub-ncc graphs, and fix
an isomorphism f from A onto an induced subgraph of B, and any
isomorphism g from A onto an induced subgraph of C. For simplicity,
we will discard f and g and identify A with its images in B and C.
Hence, without loss of generality, assume that V (B) ∩ V (C) = V (A).
Let P = {{ai, bi} : 1 ≤ i ≤ m} be a dnp pairing of A. Let |(V (B) ∪
V (C))\V (A)| = n. Let

D = (B ∪ C) + Kn.

In other words, form the union of B and C (over A), and add a suitably
large independent set of vertices. Enlarge P to a dnp pairing of all of
D by pairing each vertex of (V (B) ∪ V (C))\V (A) with a vertex of
Kn. More precisely, let (V (B) ∪ V (C))\V (A) = {y1, . . . , yn} and let
V (Kn) = {z1, . . . , zn}. Then

P ′ = {{ai, bi} : 1 ≤ i ≤ m} ∪ {{yi, zi} : 1 ≤ i ≤ n}
is a dnp pairing of D. Hence, D is a sub-ncc amalgam of B and C over
A.

For property (C), let A be a fixed finite graph. Form the graph
B = A + A, and pair each vertex of A in one copy to the same vertex
in the other copy. This gives a dnp pairing of B. ¤

Corollary 15. There is a unique isomorphism type of universal pseudo-
homogeneous countable sub-ncc graph M.
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The graph M is highly symmetric: from the theory in [15], an iso-
morphism between finite induced sub-ncc subgraphs of M extends to
an automorphism. It follows that M is vertex- and edge-transitive. We
now give an explicit recursive construction of the graph M as a limit
of finite sub-ncc graphs.

Let M0 be a copy of K2, and let P0 be the pair formed by the vertices
of M0. Assume that Mn is a finite sub-ncc graph with a dnp pairing Pn,
and assume that Mn contains M0 as an induced subgraph. Enumerate
all the induced subgraphs of Mn that are sub-ncc as Gi, 1 ≤ i ≤ jn.
Fix i in {1, . . . , jn}. Enumerate all the sub-ncc graphs of order at most
n + 1 that contain Gi as a subgraph as Ht, 1 ≤ t ≤ ki. Without loss of
generality, assume that V (Mn)∩ V (Ht) = V (Gi) for all t, and if s 6= t,
then V (Hs) ∩ V (Ht) = V (Gi). Let

r =
∑

1≤t≤ki

|V (Ht)\V (Gi)|.

Define

M ′
n+1,i =

(
Mn ∪

⋃

1≤t≤ki

Ht

)
+ Kr.

Define
M ′

n+1 =
⋃

1≤i≤jn

M ′
n+1,i.

By a similar argument as given in the proof of (AP) in Theorem 14,
the graph M ′

n+1 has a dnp pairing P ′
n+1 extending the dnp pairing Pn.

Form the graph M ′′
n+1 by adding disjoint copies of each graph of order

at most n+1 to M ′
n+1. Let r′ = |V (M ′′

n+1)\V (M ′
n+1)|. Let Mn+1 be the

graph M ′′
n+1 + Kr′ . The graph Mn+1 has a dnp pairing Pn+1 extending

P ′
n+1, and hence, Pn.
Let

M ′ =
⋃

i∈N
Mi and P ′ =

⋃

i∈N
Pi.

The graph M ′ is sub-ncc by Theorem 13, since P ′ is a dnp pairing
of M ′.

Theorem 16. The graph M is isomorphic to the graph M ′.

Proof. We must verify properties (PH1), (PH2), and (PH3). Property
(PH1) follows by the definition of M ′′

n+1 in the construction of M. For
property (PH2), let A be a finite induced subgraph of M. Then A is
an induced subgraph of some finite Mn which is sub-ncc. For prop-
erty (PH3), fix A an induced subgraph of M and B a sub-ncc graph
containing A as an induced subgraph. Suppose that A is an induced
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subgraph of Mn. From the definition of M ′
n+1, there is an isomorphic

copy B′ of B in M containing A as an induced subgraph. ¤

Apart from the symmetry exhibited by the graph M, little is known
about the properties of this graph. For instance, like R, does M have
spanning one- and two-way paths? What can be said of the endomor-
phism monoid and automorphism group of M? We plan on addressing
these problems in future work.

Acknowledgements: The author would like to thank Kathie Cam-
eron for helpful discussions on Theorem 9.
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