
GRAPH SEARCHING AND RELATED PROBLEMS

ANTHONY BONATO AND BOTING YANG

Abstract. Suppose that there is a robber hiding on vertices or
along edges of a graph or digraph. Graph searching is concerned
with finding the minimum number of searchers required to capture
the robber. We survey the major results of graph searching prob-
lems, focusing on algorithmic, structural, and probabilistic aspects
of the field.

1. Introduction

Graph searching is a hot topic in mathematics and computer sci-
ence now, as it leads to a wealth of beautiful mathematics, and since
it provides mathematical models for many real-world problems such
as eliminating a computer virus in a network, computer games, or
even counterterrorism. In all searching problems, there is a notion
of searchers (or cops) trying to capture some robber (or intruder, or
fugitive). A basic optimization question here is: What is the fewest
number of searchers required to capture the robber? There are many
graph searching problems motivated by applied problems or inspired by
some theoretical issues in computer science and discrete mathematics.
These problems are defined by (among other things) the class of graphs
(for example, undirected graphs, digraphs, or hypergraphs), the actions
of searchers and robbers, conditions of captures, speed, or visibility.

Graph searching has a variety of names in the literature, such as
Cops and Robbers games, and pursuit-evasion problems. The reader is
referred to survey papers [5, 23, 70, 72, 81] for an outline of the many
graph searching models. A recent book by Bonato and Nowakowski [37]
covers all aspects of Cops and Robbers games.

In this chapter, we give a broad overview of graph searching, focus-
ing on the most important results. The first part considers so-called
searching games where the robber may occupy an edge or vertex, and
the robber can usually move at high speeds at any time (but not al-
ways, depending on the model). The second part considers so-called
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Cops and Robbers games where the cops and robber occupy only ver-
tices and they move alternatively to their neighbors. Searching games
are often related to various width-type parameters, while there is no
such connection in Cops and Robbers. Owing to space constraints,
proofs are omitted (however, references are given for all results). The
results presented here span probabilistic, algorithmic, and structural
results. As such, the chapter is not entirely self-contained; the reader
can find most of the relevant background in the books [37, 55, 143].
We note that this chapter is the first reference to give a comprehensive
overview of both searching and Cops and Robbers games (although
searching is discussed briefly in [37]). We finish each part with a dozen
problems and conjectures which are arguably the most important ones
in the field of graph searching.

We use G = (V,E) (D = (V,E)) to denote a graph (or digraph) with
vertex set V and edge set E. We use uv to denote an edge in a graph
with two end vertices u and v and (u, v) to denote a directed edge in a
digraph with tail u and head v. All graphs and digraphs considered in
this chapter are finite and simple, unless we state otherwise.

Part 1. Searching Games

We use the moniker searching for the case when the robber can move
at great speed at any time or at least when a searcher approaches him
(not just move to a neighbor in his turn, as is the case in Cops and
Robbers).

Searching has been linked in the literature to pathwidth and vertex
separation of a graph [58, 97], to pebbling (and hence, to computer
memory usage) [97], to assuring privacy when using bugged channels
[64], to VLSI (that is, very large-scale integrated) circuit design [62],
and to motion planning of multiple robots [136]. A large number of
graph searching games have been introduced. We will focus here on
some of the basic models.

Many graph searching games are closely related to graph width pa-
rameters, such as treewidth, pathwidth, and cutwidth. They provide
some interpretation of width parameters, and often they can give a
deeper insight into the graph structures and produce efficient algo-
rithms. Examples include the proof of a min-max theorem on treewidth
[131], the linear time algorithm for computing pathwidth of a tree
[58, 95], the polynomial time algorithm for computing branchwidth of
a planar graph [132], the linear time algorithm for computing cutwidth
of a tree [106], and the computation of the topological bandwidth
[46, 105].
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Part 1 of the chapter surveys searching games on undirected graphs
and digraphs. There are four sections in this part. Section 2 deals
with the undirected graph searching games in which the robber can
move at high speeds along any searcher-free path. Section 3 deals
with the digraph searching games in which the robber usually moves
at high speeds along a searcher-free directed path (depending on the
game setting). Section 4 deals with more recently introduced searching
games. As with the end of Part 2, Part 1 closes with a dozen of open
problems in the area.

2. Searching undirected graphs

The first searching model was introduced by Parsons [117], after
being approached by the author of [39] (a paper dealing with finding a
spelunker lost in a system of caves). Let G be a connected, undirected
graph embedded in R3 with the Euclidean distance metric such that
no pair of edges intersect at a point that is not a common endpoint.
Imagine there is a robber in G who can be located at any point of G;
that is, anywhere along an edge or at a vertex. We want to capture
the robber using the minimum number of searchers. For each positive
integer k, let Ck(G) be the set of all families F = {f1, f2, . . . , fk} of
continuous functions fi : [0,∞) → G. A continuous search strategy
for G is a family F ∈ Ck(G) such that for every continuous function
h : [0,∞) → G (corresponding to the robber), there is a th ∈ [0,∞) and
fi ∈ F satisfying h(th) = fi(th). We say that fi captures the robber
at time th. The continuous search number of a graph G is the smallest
k such that there exists a search strategy for G in Ck(G). There are
some contexts for which Parsons searching is the model required. For
example, in the case of searching for someone lost or a robber hiding
in a cave system, the robber and the searchers move continuously. But
the notion of Parsons searching presents certain difficulties because the
model involves the action of continuous functions defined on the non-
negative real numbers. In this survey, we will only consider discrete
versions of Parsons searching.

2.1. Robber is invisible and active. When the robber is invisible
and active, there are three basic searching games: edge searching, node
searching, and mixed searching, which involves placing some restriction
on searchers, but placing no restrictions on the robber. In these search
games, the discrete time intervals (or time-steps) are introduced. Ini-
tially, G contains a robber who is located at a vertex in G, and G does
not contain any searchers. Each searcher has no information on the
whereabouts of the robber (that is, robber is invisible), but the robber
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has complete knowledge of the location of all searchers. The goal of
the searchers is to capture the robber, and the goal of the robber is to
avoid being captured. The robber always chooses the best strategy so
that he evades capture. Suppose we start at time t0 and the robber is
captured at time tN , and the search time is divided into N intervals
(t0, t1], (t1, t2], . . ., (tN−1, tN ] such that in each interval (ti, ti+1] (also
called step), exactly one searcher performs one action: placing, remov-
ing or sliding. The robber can move from a vertex x to a vertex y in
G at any time in the interval (t0, tN) if there exists a path between x
and y which contains no searcher (that is, robber is active).

In the edge search game introduced by Megiddo et al. [108], there are
three actions for searchers: placing a searcher on a vertex, removing a
searcher from a vertex, and sliding a searcher along an edge from one
end to the other. The robber is captured if a searcher and the robber
occupy the same vertex on G.

In the node search game introduced by Kirousis and Papadimitriou
[97], there are two actions for searchers: placing a searcher on a vertex
and removing a searcher from a vertex. The robber is captured if a
searcher and the robber occupy the same vertex of G or the robber is
on an edge whose endpoints are both occupied by searchers.

In the mixed search game introduced by Bienstock and Seymour [24],
searchers have the same actions as those in the edge search game. The
robber is captured if a searcher and the robber occupy the same vertex
on G or the robber is on an edge whose endpoints are both occupied
by searchers.

The edge search number of G, denoted by es(G), is the smallest
positive integer k such that k searchers can capture the robber. Anal-
ogously, we can define the node search number of G (written ns(G)),
and mixed search number of G (written ms(G)). The following theorem
demonstrates the relationships between search numbers.

Theorem 2.1 ([24, 97]). If G is a connected graph, then the following
inequalities hold.

(1) ns(G)− 1 ≤ es(G) ≤ ns(G) + 1.
(2) ms(G) ≤ es(G) ≤ ms(G) + 1.
(3) ms(G) ≤ ns(G) ≤ ms(G) + 1.

The following result shows that all three search problems are NP-
complete.

Theorem 2.2 ([24, 97, 101, 108]). Given a graph G and an integer k,
the problem of determining whether es(G) ≤ k (ns(G) ≤ k or ms(G) ≤
k) is NP-complete.
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Megiddo et al. [108] only showed that the edge search problem is NP-
hard. This problem belongs to NP owing to the monotonicity result of
[101], in which LaPaugh showed that recontamination of edges cannot
reduce the number of searchers needed to clear a graph. A search strat-
egy is monotonic if the set of cleared edges before any step is always
a subset of the set of cleared edges after the step. Monotonicity is an
important issue in graph search problems. Bienstock and Seymour [24]
proposed a method that gives a succinct proof for the monotonicity of
the mixed search problem, which implies the monotonicity of the edge
search problem and the node search problem. Fomin and Thilikos [71]
provided a general framework that can unify monotonicity results in a
unique minmax theorem.

Theorem 2.3 ([24, 101]). The edge search, node search and mixed
search problems are monotonic.

Search numbers have close relationships with pathwidth and treewidth
[126, 127]. Given a graph G, a tree decomposition of G is a pair (T, W )
with a tree T = (I, F ), I = {1, 2, . . . , m}, and a family of non-empty
subsets W = {Wi ⊆ V : i = 1, 2, . . . , m}, such that

(1)
⋃m

i=1 Wi = V ,
(2) for each edge uv ∈ E, there is an i ∈ I with {u, v} ⊆ Wi, and
(3) for all i, j, k ∈ I, if j is on the path from i to k in T , then

Wi

⋂
Wk ⊆ Wj.

The width of a tree decomposition (T, W ) is

max{|Wi| − 1 : 1 ≤ i ≤ m}.
The treewidth of G, denoted by tw(G), is the minimum width over
all tree decompositions of G. A tree decomposition (T, W ) is a path
decomposition if T is a path; the pathwidth of a graph G, denoted by
pw(G), is the minimum width over all path decompositions of G. One
can find more information on treewidth and related problems in the
survey papers [25, 124].

Another related graph parameter is the vertex separation introduced
by Ellis et al. [58]. A layout of a connected graph G is a one to one
mapping L: V → {1, 2, . . . , |V |}. Let VL(i) ={x : x ∈ V , and there
exists y ∈ V such that xy ∈ E, L(x) ≤ i and L(y) > i}. The vertex
separation of G with respect to L, denoted by vsL(G), is defined as

vsL(G) = max{|VL(i)| : 1 ≤ i ≤ |V |}.
The vertex separation of G is defined as

vs(G) = min{vsL(G) : L is a layout of G}.
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Yang [144] introduced the strong-mixed search game, which is a gen-
eralization of the mixed search game. The strong-mixed search game
has the same setting as the mixed search game except that searchers
have an extra power to clear a neighborhood subgraph; that is, the sub-
graph induced by N [v] (a set contains v and its neighbors) is cleared
if all vertices in N(v) (a set contains only the neighbors of v) are oc-
cupied by searchers. The strong-mixed search number of G, denoted
by sms(G), is the smallest positive integer k such that k searchers can
clear G. The following relationships were given in [95, 97, 144].

Theorem 2.4 ([95, 97, 144]). If G is a connected graph, then

sms(G) = pw(G) = vs(G) = ns(G)− 1.

For an edge search strategy, if the subgraph induced by cleared edges
is connected in every step, then we call it connected search. We denote
by cs(G) and mcs(G) respectively, the connected and monotonic con-
nected search numbers of a graph G defined in the natural way.

The following theorem from [149, 150] demonstrates that the con-
nected search game is not monotonic.

Theorem 2.5 ([149, 150]). For any positive integer k, there is a graph
Wk such that cs(Wk) = 280k + 1 and mcs(Wk) = 290k.

Fraigniaud and Nisse [63] investigated visible robber connected node
search. They proved that recontamination does help as well to catch a
visible robber in a connected way.

Barrière et al. [17] proved that mcs(T ) ≤ 2es(T ) for any tree T .
Dereniowski [54] extended the result to graphs as follows.

Theorem 2.6 ([54]). For any graph G, mcs(G) ≤ 2es(G) + 3.

Fomin et al. [69] introduced the domination search game, in which
the robber hides only on vertices and searchers are placed or are re-
moved from vertices of a graph. In the domination search game,
searchers are more powerful than those in the node search game. A
searcher “captures” the robber if she can “see” him; that is, a searcher
on a vertex v can clear v and all its neighbors. The following theorem
gives a relation between the domination search number, written dsn(G),
node search number and the domination number, written γ(G).

Theorem 2.7 ([69]). For any graph G, let G′ be a graph obtained from
G by replacing every edge by a path of length three, and H be a graph
obtained from G by connecting every two non-adjacent vertices by a
path of length three. Then

ns(G) = dsn(G′) and γ(G) ≤ dsn(H) ≤ γ(G) + 1.
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Kreutzer and Ordyniak [100] extended the domination game to dis-
tance d-domination games, in which each searcher can see a certain
radius d around her position. That is, a searcher on vertex v can see
any other vertex within distance d of v and if this vertex is occupied
by the robber, then the searcher can see the robber and capture him.
They showed that all questions concerning monotonicity and complex-
ity about d-domination games can be reduced to the case of d = 1.
They gave a class of graphs on which two searchers can win on any
graph in this class but the number of searchers required for mono-
tone winning strategies is unbounded. Due to the following result, the
domination search problem is much harder than standard graph search
problems. For background on PSPACE and other complexity classes,
see Spiser [134].

Theorem 2.8 ([100]). The domination search problem is PSPACE-
complete. Moreover, the problem of deciding whether two searchers
have a winning strategy on a graph is PSPACE-complete.

2.2. Robber is visible or lazy. Dendris et al. [53] introduced the
lazy-robber game, which has the same setting as the node searching
game except that the robber stays only on vertices and moves just
before a searcher is going to be placed on the vertex currently occupied
by the robber (that is, robber is lazy). When a searcher is going to be
placed on a vertex u currently occupied by the robber, the robber can
move from u to another vertex v if there is a searcher-free path from
u to v; otherwise, the robber is captured. The following result from
Dendris et al. [53] shows that the lazy-robber game is monotonic and
the search number of a graph in the lazy-robber game is equal to the
treewidth of the graph plus one.

Theorem 2.9 ([53]). Let G be a graph. For a lazy robber with un-
bounded speed, the monotonic search number of G is equal to the search
number of G, and moreover, it is equal to tw(G) + 1.

Dendris et al. [53] also considered the speed-limited lazy robber.
They showed that if the speed is 1, then the search number minus 1
is equal to a graph parameter, called width, which is polynomial-time
computable for arbitrary graphs. Given a layout L of a connected
graph G, the width of a vertex v ∈ V with respect to the layout L is
the number of vertices which are adjacent to v and precede v in the
layout. The width of the layout L is the maximum width of a vertex
of G. The width of G is the minimum width of a layout of G.
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Theorem 2.10 ([53]). Let G be a graph. For a lazy robber with speed
1, the monotonic search number of G is equal to the search number of
G, and moreover, it is equal to the width of G plus 1.

Seymour and Thomas [131] introduced another variant of graph
searching, visible-robber game. Its setting differs from node search in
that the robber stands only on vertices and is visible to searchers. They
showed that the visible-robber game is monotonic and the search num-
ber of a graph in the visible-robber game is equal to the treewidth of
the graph plus one. They also showed that if there is a non-losing
strategy for the robber, then there is a “nice” non-losing strategy with
a particularly simple form. In order to show these results, Seymour
and Thomas introduced jump-search and haven.

For a graph G and X ⊆ V , let G − X be the graph obtained from
G by deleting X. The vertex set of a component of G−X is called an
X-flap. Let [V ]<k be the set of all subsets of V of cardinality less than
k. The following lemma describes a strategy for the robber.

Lemma 2.11 ([131]). A graph G cannot be cleared by less than k
searchers if and only if there is a function σ mapping each X ∈ [V ]<k

to a non-empty union σ(X) of X-flaps, such that if X ⊆ Y ∈ [V ]<k,
then σ(X) is the union of all X-flaps which intersect σ(Y ).

Two vertex sets X, Y ⊆ V (G) touch if either X ∩ Y 6= ∅ or some
vertex in X has a neighbor in Y . In jump-searching, each searcher
can jump from a vertex to another vertex. At the start of the ith
step, searchers occupy Xi−1 ∈ [V ]<k and the robber is in the subgraph
Ri−1, which is an Xi−1-flap. After some searchers jump, the searchers
occupy Xi ∈ [V ]<k and the robber chooses an Xi-flap Ri, which touches
Ri−1. Havens correspond to particularly nice winning strategies for the
robber. A haven of order k is a function β which assigns an X-flap
β(X) to each X ∈ [V ]<k, in such a way that β(X) touches β(Y ) for
all X, Y ∈ [V ]<k. A screen in G is a set of subsets of V (G) such that
each subset induces a connected subgraph of G and any two subsets
touch each other. A screen S has thickness at least k if there is no
X ∈ [V ]<k such that X ∩ H 6= ∅ for all H ∈ S. The following result
from Seymour and Thomas [131] demonstrates the relations among
screen, haven, visible-robber search, monotonic visible-robber search,
and treewidth.

Theorem 2.12 ([131]). For a graph G and an integer k ≥ 1, the
following are equivalent.

(1) G has a screen of thickness at least k.
(2) G has a haven of order at least k.



GRAPH SEARCHING AND RELATED PROBLEMS 9

(3) Fewer than k searchers cannot jump-search clear G.
(4) Fewer than k searchers cannot clear G,
(5) Fewer than k searchers cannot monotonically clear G,
(6) G has treewidth at least k − 1.

The problem of determining whether k searchers can capture the rob-
ber in the visible-robber game (or lazy-robber game) is NP-complete
since it is monotonic and computing treewidth (equivalently, partial
k-tree) is NP-complete [13].

Theorem 2.13 ([13]). Given a graph G and a positive integer k, the
problem of determining whether the treewidth of G is at most k is NP-
complete.

There are many variants of graph searching games, for example, time
constrained searching [6], network security searching [16], weighted
graphs searching [153], robber-and-marshals games [79], geometric en-
vironment searching [137, 138, 139], and more searching games on undi-
rected graphs can be found in Section 4.

3. Searching digraphs

3.1. Robber is visible or lazy. Johnson et al. [90] generalized the
concept of treewidth to digraphs. For a digraph D, let Z and S be two
disjoint subsets of V . The set S is Z-normal if for every directed path
in D with first and last vertices in S, all vertices of the path belong to
S ∪ Z. An arborescence is a directed tree T with edges oriented away
from a unique vertex r ∈ V (T ) (called the root). We write t > e for
t ∈ V (T ) and e ∈ E(T ) if e occurs on the unique directed path from
r to t, and e ∼ t if e is incident with t. An arboreal decomposition
of a digraph D is a triple (T,X, W ) where T is an arborescence, and
X = {Xe ⊆ V (D) : e ∈ E(T )} and W = {Wt ⊆ V (D) : t ∈ V (T )}
satisfy the following items.

(1) W is a partition of V (D) into non-empty sets, and
(2) If e ∈ E(T ), then

⋃{Wt : t ∈ V (T ) and t > e} is Xe-normal.

The width of an arboreal decomposition (T, X, W ) is the minimum k
such that for all t ∈ V (T ),

∣∣∣∣∣Wt ∪
⋃
e∼t

Xe

∣∣∣∣∣ ≤ k + 1.

The directed treewidth of D is the least integer k such that D has an
arboreal decomposition of width k.
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Johnson et al. [90] introduced a generalization of the visible-robber
game, called the strong-directed visible-robber game. In the strong-
directed visible-robber game, the robber occupies only vertices and
must obey the edge directions when he moves along edges. The searchers
have two actions – placing on vertices and removing from vertices. The
robber is visible, and the robber can move from vertex u to v if there
is a searcher-free directed cycle containing u and v.

Theorem 3.1 ([90]). Let D be a digraph and k be an integer. If D has
directed treewidth less than k, then k searchers have a winning strategy
in the strong-directed visible-robber game.

Johnson et al. [90] gave an example to show that the winning strat-
egy in Theorem 3.1 need not be searcher-monotone in the sense that
searchers may have to revisit certain vertices. Adler [1] showed that
it may not be robber-monotone either. She constructed a digraph
where four searchers have a winning strategy but they have no robber-
monotone winning strategy. This is very different from the undirected
case, where a graph has treewidth less than k implies that k searchers
have a winning strategy where no vertex is revisited once it has been
vacated. The following theorem gives a relation between the treewidth
and directed treewidth.

Theorem 3.2 ([90]). Let G be a graph, and let D be the digraph ob-
tained from G by replacing every edge with two directed edges directed
in opposite directions. Then the directed treewidth of D is equal to the
treewidth of G.

Let k ≥ 1 be an integer. A haven of order k in a digraph D is a
function β assigning to every Z ⊆ V (D) with |Z| < k the vertex set
of a strong component of D − Z in such a way that if Z ′ ⊆ Z ⊆ V (D)
with |Z| < k, then β(Z) ⊆ β(Z ′). In the strong-directed visible-robber
game, if k − 1 searchers have a winning strategy on the digraph D,
then D has no haven of order k. If β is a haven of order k in D, then
the robber wins against k− 1 searchers by staying in β(Z), where Z is
the set of vertices occupied by the searchers. Johnson et al. [90] proved
the following relation between the directed treewidth and haven.

Theorem 3.3 ([90]). Let D be a digraph and k be a positive integer.
If D has a haven of order k, then its directed treewidth is at least k−1.

Adler [1] showed that the converse of Theorem 3.3 is not true by
constructing a digraph whose directed treewidth is at least 4 but it has
no haven of order 5. Johnson et al. [90] showed the following upper
bound.
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Theorem 3.4 ([90]). Let D be a digraph and k be a positive integer.
Then either D has directed treewidth at most 3k − 2 or it has a haven
of order k.

Corollary 3.5 ([90]). Let D be a digraph and k be a positive integer.
Then either D has directed treewidth at most 3k − 1 or k searchers do
not have a winning strategy in the strong-directed visible-robber game
on D.

Berwanger et al. [20] and Obdržálek [116] introduced another width
measure for digraphs, called DAG-width. Given a digraph D, a set
X ⊆ V guards a set Y ⊆ V if X ∩ Y = ∅ and whenever there is an
edge (u, v) ∈ E such that u ∈ Y and v 6∈ Y , then v ∈ X. A DAG-
decomposition of D is a pair (T, W ) with T an acyclic digraph and
W = {Wt ⊆ V : t ∈ V (T )} a family of non-empty subsets, such that
the following hold.

(1)
⋃

t∈V (T ) Wt = V .

(2) For all t, t′, t′′ ∈ V (T ), if t′ is on a directed path from t to t′′ in
T , then Wt

⋂
Wt′′ ⊆ Wt′ .

(3) For all edges (t, t′) ∈ E(T ), Wt

⋂
Wt′ guards W≥t′ \Wt, where

W≥t′ =
⋃{Wt′′ : t′′ ∈ V (T ) and there is a directed path from t′

to t′′ in T}. For all roots r ∈ V (T ), W≥r is guarded by ∅.
The width of a DAG-decomposition (T, W ) is

max{|Wt| : t ∈ V (T )}.
The DAG-width of D is the minimum width of any of its DAG-decom-
positions.

Berwanger et al. [20] and Obdržálek [116] introduced the directed
visible-robber game, which has the same setting as the strong-directed
visible-robber game except that the robber is more powerful. The rob-
ber is allowed to move from vertex u to v if there is a searcher-free
directed path from u to v. They use this game to characterize the
DAG-width.

The directed visible-robber game and the strong-directed visible-
robber game have some different properties owing to the different be-
havior of robbers. One difference is that the search number in the
strong-directed visible-robber game is invariant under edge reversal;
that is, it does not change if the directions of all edges of the digraph are
reversed. But this is not the case for the directed visible-robber game.
Another difference is that for the strong-directed visible-robber game
with k searchers, there are digraphs that have a robber-monotone win-
ning strategy, but no searcher-monotone winning strategy. However,
Berwanger et al. [20] proved the following.
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Theorem 3.6 ([20]). For the directed visible-robber game with k searchers,
if the searchers have a searcher-monotone or robber-monotone winning
strategy, then they also have a winning strategy that is both searcher-
and robber-monotone.

A monotone strategy is a strategy that is both searcher-monotone
and robber-monotone. Berwanger et al. [20] and Obdržálek [116] es-
tablished the following relation between the search number and the
DAG-width.

Theorem 3.7 ([20, 116]). Let D be a digraph and k be a positive
integer. Then D has a DAG-decomposition of width k if and only if
k searchers have a monotone winning strategy in the directed visible-
robber game on D.

Similar to Theorem 3.2, Berwanger et al. proved the following.

Theorem 3.8 ([20]). Let G be a graph, and let D be the digraph ob-
tained from G by replacing every edge with two directed edges directed in
opposite directions. Then the DAG-width of D is equal to the treewidth
of G minus one.

Berwanger et al. [20] also proved that if a digraph has DAG-width k,
its directed treewidth is at most 3k + 1. However, there is a family of
digraphs with directed treewidth 1 and arbitrarily large DAG-width.
Kreutzer and Ordyniak [99] proved that the directed visible-robber
game is non-monotone.

Theorem 3.9 ([99]). For any positive integer k ≥ 2, there is a digraph
Dk such that in the directed visible-robber game on Dk, the monotonic
search number of Dk is 4k − 2 and the search number of Dk is 3k − 1.

Hunter and Kreutzer [88] extended the lazy-robber game to the di-
rected lazy-robber game on digraphs, which has the same setting as
the lazy-robber game on graphs except that the robber must obey the
edge directions when he moves along edges. They use this game to
characterize the digraph width measure, called Kelly-width.

Given a digraph D, a Kelly-decomposition of D is a triple (T, B,W )
with T an acyclic digraph, B = {Bt ⊆ V : t ∈ V (T )} and W = {Wt ⊆
V : t ∈ V (T )}, such that the following properties hold.

(1) The set B is a partition of V into non-empty sets.
(2) For all t ∈ V (T ), Wt guards B≥t, where B≥t =

⋃{Bt′ : t′ ∈
V (T ) and there is a directed path from t to t′ in T}.
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(3) For all s ∈ V (T ), there is a linear order on its children t1, . . . , tp
such that for all 1 ≤ i ≤ p,

Wti ⊆ Bs ∪Ws ∪
⋃
j<i

B≥tj .

Similarly, there is a linear order on roots r1, . . . , rq of T such
that for all 1 ≤ i ≤ q,

Wri
⊆

⋃
j<i

B≥rj
.

The width of a Kelly-decomposition (T, B, W ) is

max{|Bt ∪Wt| : t ∈ V (T )}.
The Kelly-width of D is the minimum width of any of its Kelly-decompositions.

The following result from Hunter and Kreutzer [88] shows that k
searchers have a monotone winning strategy to capture a lazy robber
in a digraph D if and only if D has Kelly-width k.

Theorem 3.10 ([88]). Let D be a digraph and k be a positive integer.
Then D has a Kelly-decomposition of width k if and only if k searchers
have a monotone winning strategy in the directed lazy-robber game on
D.

Hunter and Kreutzer [88] gave the following relation between the
directed lazy-robber game and the directed visible-robber game.

Theorem 3.11 ([88]). Let D be a digraph and k be a positive integer.
If k searchers have a robber-monotone winning strategy in the directed
lazy-robber game on D, then 2k − 1 searchers have a winning strategy
in the directed visible-robber game on D.

Theorem 3.12 ([88]). Let D be a digraph and k be a positive integer.
If k searchers have a monotone winning strategy in the directed visible-
robber game on D, then k searchers have a winning strategy in the
directed lazy-robber game on D.

Kreutzer and Ordyniak [99] proved that the directed lazy-robber
game is non-monotone.

Theorem 3.13 ([99]). For any positive integer k ≥ 2, there is a digraph
Dk such that in the directed lazy-robber game on Dk, the monotonic
search number of Dk is 7k and the search number of Dk is 6k.

The problem of determining whether k searchers can capture the
robber in the directed visible-robber game (resp. directed lazy-robber
game, or strong-directed visible-robber game) is NP-hard.
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Besides the above width measures, several new digraph measures are
introduced recently, which include K-width [76], DAG-depth [76], en-
tanglement [21], D-width [128], directed pathwidth [15], directed vertex
separation [148], and bi-rank-width [92]. See also the thesis of Hunter
for more discussions [87].

3.2. Robber is invisible and active. Reed, Seymour and Thomas
introduced the directed pathwidth. Given a digraph D, a directed path
decomposition of D is a sequence of subsets of vertices W1,W2, . . . ,Wm

such that the following hold.

(1)
⋃m

i=1 Wi = V .
(2) For 1 ≤ i < j < k ≤ m, Wi

⋂
Wk ⊆ Wj.

(3) For each edge in D, it either has both endpoints in the same
Wi or has its tail in Wi and head in Wj, where i < j.

The width of a directed path decomposition of D is

max
1≤i≤m

{|Wi| − 1}.

The directed pathwidth of D, denoted by dpw(D), is the minimum width
over all directed path decompositions of D.

Barát [15] introduced a generalization of the node searching, called
the directed node search game, to characterize the directed pathwidth.
The directed node search game has the same setting as the node search
game on graphs except that the robber occupies only vertices and must
obey the edge directions when he moves along edges. He proved that
an optimal monotonic search strategy for a digraph needs at most one
more searcher than the search number of the digraph, and he also
proved that the directed pathwidth and the directed node search num-
ber differ by at most one. Specifically, he proved the following theorem.

Theorem 3.14 ([15]). For a digraph D and an integer k ≥ 1, the
following downward implications apply.

(1) There is a monotone capture of the robber in D with at most k
searchers.

(2) The directed pathwidth of D is at most k − 1.
(3) There is a capture of the robber in D with at most k searchers.
(4) There is a monotone capture of the robber in D with at most

k + 1 searchers.

Yang and Cao [145, 146, 147] generalized the edge searching prob-
lem to digraphs by introducing three digraph search games: directed
search, strong search and weak search. In all three games, the robber is
invisible and searchers have three types of actions: placing, removing,
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and sliding. These games differ in the abilities of the searchers and rob-
ber depending on whether or not they must obey the edge directions.
In the directed search game, both searchers and robber must move in
the edge directions; in the strong search game, the robber must move
in the edge directions but searchers need not; and in the weak search
game, searchers must move in the edge directions but the robber need
not. In particular, in the directed and strong search games, the robber
can move from vertex u to vertex v along a searcher-free directed path
from u to v at a great speed at any time; and in the weak search game,
the robber can move from vertex u to vertex v along a searcher-free
undirected path between u and v at a great speed at any time.

For a digraph D, let ds(D), ss(D), and ws(D) denote the directed,
strong, and weak search number, respectively. Let mds(D), mss(D),
and mws(D) denote the monotonic directed, monotonic strong, and
monotonic weak search number respectively. The following result shows
that the directed, strong, and weak search problems are all monotonic
and NP-complete.

Theorem 3.15 ([145, 146, 147]). Let D be a digraph and k be a positive
integer. Then mds(D) = ds(D), mss(D) = ss(D) and mws(D) =
ws(D). Moveover, the problem of deciding whether ds(D) ≤ k, ss(D) ≤
k, or ws(D) ≤ k is NP-complete.

Let es(D) be the edge search number of the underlying undirected
graph of D. Yang and Cao gave the following relationships between
search numbers.

Theorem 3.16 ([145, 146, 147]). Let D be a digraph. Then the fol-
lowing inequalities hold.

(1) ss(D) ≤ ds(D) ≤ ws(D).
(2) ss(D) ≤ es(D) ≤ ws(D).
(3) ds(D)− 1 ≤ ss(D) ≤ ds(D).
(4) ds(D) ≤ es(D) + 1.
(5) ws(D) ≤ es(D) + 2.

Nowakowski [114] and Alspach et al. [7] introduced another three
digraph search games: internal directed search, internal strong search
and internal weak search, which have the same setting as the directed
search, strong search and weak search, respectively, except that in
the internal games, searchers have only two types of actions: plac-
ing and sliding. Yang and Cao [145] proved that the internal directed
search problem is monotonic, however, the internal strong and internal
weak search problems are not monotonic. Although the internal strong
search game is not monotonic, they still proved it is in NP. But the
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problem of whether the internal weak search game is in NP is still
open.

Theorem 3.17 ([145]). Given a digraph D and an integer k, the prob-
lem of determining whether k searchers can capture the robber in the
internal directed (or strong) search game is NP-complete, and the prob-
lem of determining whether k searchers can capture the robber in the
internal weak search game is NP-hard.

Yang and Cao [148] extended the vertex separation to digraphs.
Given a digraph D and a linear layout L : V → {1, 2, ..., |V |}, let
DVL(i) ={x ∈ V : there exists y ∈ V such that edge (y, x) ∈ E and
L(x) ≤ i and L(y) > i}. The directed vertex separation of D with
respect to L, denoted by dvsL(D), is defined as

dvsL(D) = max{|DVL(i)| : 1 ≤ i ≤ |V |}.
The directed vertex separation of D is defined as dvs(D) = min{dvsL(D) :
L is a linear layout of D}. The following relationships were given in
[148].

Theorem 3.18 ([148]). Let D be a digraph. Then the following in-
equalities hold.

(1) dvs(D) = dpw(D).
(2) dvs(D) + 1 ≤ ds(D) ≤ dvs(D) + 2.
(3) dvs(D) ≤ ss(D) ≤ dvs(D) + 2.

4. Other searching games

4.1. Mixed searching with multiple robbers. As mentioned in
Section 2.1, Bienstock and Seymour [24] introduced the mixed search
game, in which searchers have three actions: placing, removing and
sliding. The mixed search game can be used to characterize the proper
pathwidth introduced by Takahashi et al. [140].

A graph G is a minor of graph H if G can be obtained from a
subgraph of H by edge contractions, where a contraction of edge uv is
the deletion of uv, followed by identifying u and v such that all vertices
adjacent u or v is adjacent to the new vertex. The proper pathwidth
of a graph G, denoted as ppw(G), is the least integer k such that G is
a minor of the graph Kk¤P for some path P , where Kk is a clique of
order k and ¤ is the cartesian product operator. Similarly, the proper
treewidth of a graph G, denoted as ptw(G), is the least integer k such
that G is a minor of the graph Kk¤T for some tree T .

The following result from Takahashi et al. [141] shows the relation
between the mixed search number and the proper pathwidth.
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Theorem 4.1 ([141]). For any graph G, ms(G) = ppw(G).

Richerby and Thilikos [125] studied the mixed search game with
multiple robbers who stay only on vertices. A robber is captured if a
searcher and the robber occupy the same vertex of G. A set of searchers
win the game if they can capture all robbers, otherwise, robbers win.

For a graph G with ms(G) = k, if monotonicity is ignored, then k
searchers can capture any number of visible active robbers, one at a
time by repeating the strategy to capture a single robber. So, mono-
tonicity is crucial in the mixed search game with multiple robbers. The
robbers’ territory Fi at step i is the union of each robber’s territory.
A search strategy is monotonic if Fi+1 ⊆ Fi for all i. Let mvams(G, r)
denote the monotonic mixed search number for r visible active robbers
in G, vams(G, r) denote the mixed search number for r visible active
robbers in G, milms(G, r) denote the monotonic mixed search number
for r invisible lazy robbers in G, and ilms(G, r) denote the mixed search
number for r invisible lazy robbers in G. Richerby and Thilikos showed
the following relations.

Theorem 4.2 ([125]). For any graph G with n vertices,

(1) mvams(G,n) = ms(G) = ppw(G).
(2) mvams(G, 1) = milms(G, 1).
(3) ilms(G, r) = ilms(G, 1).
(4) milms(G, r) = milms(G, 1) = ptw(G).
(5) mvams(G, r) ≤ min{ppw(G), ptw(G)(blog rc+ 1)}.

Theorem 4.3 ([125]). For any tree T with r robbers,

mvams(T, r) = min{ppw(T ), blog rc+ 1}.
4.2. Non-deterministic graph searching. Fomin et al. [65] intro-
duced non-deterministic graph searching, which can be used in algo-
rithm design and combinatorial analysis applying to both pathwidth
and treewidth. In the non-deterministic graph searching, the searchers
and robber stay only on vertices. There are three actions for searchers:
placing a searcher on a vertex, removing a searcher from a vertex, and
query the oracle that returns the connected component containing the
robber. The robber has the same behavior as the node search game.
For a non-negative integer q, a q-limited non-deterministic searching is
a non-deterministic searching that performs at most q query actions.
Therefore, k searchers win a q-limited non-deterministic search game
against a robber if they can capture the robber by querying the oracle
at most q times. The q-limited non-deterministic search number of a
graph G is the minimum number of searchers required to win the game.
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Fomin et al. [65] extended the tree decomposition and treewidth to
q-branched tree decomposition and q-branched treewidth. They used
the non-deterministic graph search game to characterize the q-branched
treewidth. A rooted tree decomposition of a graph G is a tree decom-
position (T, W ) of G in which T is a rooted tree and W is a family
of non-empty subsets of V (G) satisfying the three conditions of a tree
decomposition. A branching node of a rooted tree decomposition is
a node with at least 2 children. For a non-negative integer q, a q-
branched tree decomposition of a graph G is a rooted tree decompo-
sition (T, W ) of G such that every path in T from the root to a leaf
contains at most q branching nodes. The q-branched treewidth of G, is
the minimum width of any q-branched tree decomposition of G. The
following theorem from Fomin et al.[65] shows the relation between the
non-deterministic graph search game and the q-branched treewidth.

Theorem 4.4 ([65]). For a graph G, a non-negative integer q and a
positive integer k, at most k searchers win the q-limited non-deterministic
search game in a monotonic way if and only if the q-branched treewidth
is less than k.

Fomin et al. used the q-limited non-deterministic graph searching
to design an exact exponential-time algorithm for computing the q-
branched treewidth of a graph.

Theorem 4.5 ([65]). For a graph G with n vertices, there exists an
algorithm that computes the q-branched treewidth and its corresponding
optimal q-branched tree decomposition of G in time O(2nn log n).

Mazoit and Nisse [107] showed that the q-limited non-deterministic
graph searching is monotone for any non-negative integer q.

Theorem 4.6 ([107]). For a graph G, a non-negative integer q and an
integer k ≥ 2, k searchers win the q-limited non-deterministic search
game if and only if they can do it in a monotonic way.

4.3. Fast searching. In the edge search game, the goal is to find the
minimum number of searchers to clear a given graph. Yang [151] intro-
duced a new game called the fast edge-searching, which has the same
setting as the edge search game except the goal. In the fast edge-search
game, the goal is to find the minimum number of steps (or equivalently,
actions) to clear a given graph. The fast edge-search game has a strong
connection with the fast search game, which was first introduced by
Dyer et al. [57]. The fast search game has the same setting as the
edge search game except that every edge is traversed exactly once by
a searcher and searchers cannot be removed.
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The motivation to consider the fast edge-searching and fast search-
ing is that, in some real-life scenarios, the cost of a searcher may be
relatively low in comparison to the cost of allowing a fugitive to be free
for a long period of time. For example, if a dangerous fugitive hiding
along streets in an area, policemen always want to capture the fugitive
as soon as possible.

In the fast edge-searching game, the minimum number of steps re-
quired to clear G is the fast edge-search time of G, denoted by fet(G),
and the minimum number of searchers required so that G can be
cleared in fet(G) steps is the fast edge-search number of G, denoted
by fen(G). Similarly, the minimum number of searchers required to
clear G in the fast search game is the fast search number of G, denoted
by fsn(G). A difference between the two games is that the family of
graphs {G : fet(G) ≤ k} is minor-closed for the fast edge-searching, but
the family of graphs {G : fsn(G) ≤ k} is not minor-closed for the fast
searching. The difference between fen(G) and fsn(G) can be large. In
fact, there exists a class of graphs H such that the ratio fsn(H)/fen(H)
is arbitrarily large. Yang gave the following relationship between the
fast edge-searching game and the fast searching game.

Theorem 4.7 ([151]). For any graph G,

fet(G) = fsn(G) + |E|.
For a graph G, let G′ be a graph obtained from G by adding a vertex a

and connecting it to each vertex of G. Let A′
G be a multigraph obtained

from G′ by replacing each edge with four parallel edges. Let AG be a
graph obtained from A′

G by replacing each edge of A′
G with a path of

length 2. Then the following relation between the node search number
of G and the fast search number of AG was given in [151].

Theorem 4.8 ([151]). For a graph G and its corresponding graph AG,

ns(G) = fsn(AG)− 2 = fen(AG)− 2.

Although the node search number and the fast search number have
the above relation, Stanley and Yang [135] presented a linear time
algorithm for computing the fast search number of cubic graphs, while
it is NP-complete to find the node search number of cubic graphs [105].

Corollary 4.9. The fast search problem and the fast edge-search prob-
lem are NP-complete. They remain NP-complete for Eulerian graphs.

Yang showed the following bounds for the fast search number.
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Theorem 4.10 ([151]). For a connected graph G with minimum degree
at least 3, we have that

max
{

δ(G) + 1,
⌈δ(G) + |Vodd(G)| − 1

2

⌉}
≤ fsn(G) ≤ |E|,

where δ(G) is the minimum degree of G and Vodd(G) is the set of all
odd vertices in G.

The fast searching game has a close relation with the graph brushing
problem [109, 3, 78] and the balanced vertex-ordering problem [22, 93].
For all graphs, the brush number is equal to the total imbalance of
an optimal vertex-ordering. For some graphs, such as trees, the fast
search number is equal to the brush number.

4.4. Graph guarding. Fomin et al. [67] introduced the graph guard-
ing games, in which a set of cops want to guard a region in a given
graph against a robber. The robber and cops stay only on vertices of
the graph, and both sides take alternative turns to play. All partici-
pants have complete information on the location of all other partici-
pants. Initially, the robber is placed on a vertex outside the protected
region, and then all cops are placed on vertices inside the protected
region. In robber’s turn, he can move to any adjacent vertex. The
robber wins if he can move to an unguarded vertex in the region. In
the cops’ turn, each cop can move to an adjacent vertex in the region
or stay put. The cops win if they can forever prevent the robber to
win. The guarding problem is to find the minimum number of cops
needed to win the game.

Fomin et al. [67] showed that the guarding problem is polynomial
time solvable if the robber’s region is a path. Nagamochi [113] showed
that the guarding problem is polynomial time solvable if the robber’s
region is a cycle.

Theorem 4.11 ([67]). For a graph G = (V,E), let C be the protected
region (vertex set). If V \ C induces a path in G, then the guarding
problem can be solved in O(n1n2m) time, where n1 = |C|, n2 = |V \C|
and m = |E|.

Fomin et al. showed that the guarding problem is NP-hard even if
the robber’s region is a star.

Theorem 4.12 ([67]). Given a graph G = (V, E), a protected region C
(vertex set), and an integer k, it is NP-hard to decide whether k cops
can win the guarding game. It remains NP-hard even if V \C induces
a star. Moreover, the parameterized version of the problem with k (the
number of cops) being a parameter is W[2]-hard.
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The guarding game can also play on digraphs, in which the robber
and cops always follow edge directions when they move to neighbors.

Theorem 4.13 ([67]). Given a digraph D = (V,E), a protected region
C (vertex set), and an integer k, if V \C induces an acyclic digraph, it
is PSPACE-complete to decide whether k cops can win the guarding
game.

In the guarding game, the robber moves first. In [68], Fomin et
al. also studied a variant of the guarding game, in which cops move
first. They showed that the new guarding problem is PSPACE-hard
on undirected graphs.

4.5. Minimum cost searching. Almost all graph search problems
are to find search strategies such that the maximum number of searchers
used at each step is minimized. Fomin and Golovach [66] proposed a
different optimization criterion. They introduced a cost function in the
node searching game, which is the sum of the number of searchers in
every step of the node search process.

One can interpret the cost of a search as the total sum that searchers
earn for doing their job. The search cost of a graph G, denoted by σ(G),
is the minimum cost of a search where the minimum is taken over all
searches on G. For monotonic node searching, the monotonic search
cost of G, denoted by σm(G), can be defined similarly. Fomin and
Golovach [66] proved their minimum cost searching is monotonic.

Theorem 4.14 ([66]). For any graph G, σ(G) = σm(G).

Kirousis and Papadimitriou [96] found a relation between node search-
ing and interval graphs. An interval graph is one that has an interval
model, which is a set of intervals of the real line, one for each vertex,
such that two intervals intersect if and only if the corresponding ver-
tices are adjacent. Every graph is a subgraph of an interval graph in a
trivial way. The interval thickness of a graph G, denoted by θ(G), is
the smallest max-clique over all interval supergraphs of G.

Theorem 4.15 ([96]). For any graph G, ns(G) = θ(G).

Fomin and Golovach proved the following relation between minimum
cost searching and interval graphs.

Theorem 4.16 ([66]). For any graph G and positive integer k, σ(G) ≤
k if and only if there is an interval supergraph I of G such that E(I) ≤
k.
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Dyer et al. [57] introduced the following cost function in the edge
searching game on a graph G:

CG(s, t) = αs + βst + γt,

where es(G) ≤ s ≤ fsn(G) and t = t(s) ≥ |E|. The goal is to minimize
the cost function CG, instead of trying to minimize s, which corresponds
to edge searching, or to minimize t, which corresponds to fast searching.

4.6. Pebbling. Pebble games on graphs and digraphs have been stud-
ied by both mathematicians and computer scientists [18, 47, 52, 85,
97, 110, 111]. Pebbling is a method of analyzing computational sit-
uations, especially situations in which notions such as time (number
of operations) and space (number of memory locations) are of interest
[51, 86, 91, 94, 98, 102]. We focus on the relationship between graph
searching and pebbling [97].

Let D be an acyclic digraph. For an edge (u, v) ∈ E(D), v is called
a successor of u, and u is called a predecessor of v. We consider two
versions of pebbling: one is black pebbling and the other is black and
white pebbling. The rules for black pebbling are as follows.

(1) All vertices of D start pebble-free.
(2) All vertices of D end pebble-free.
(3) Each vertex receives and loses a pebble at least once.
(4) A pebble can be placed on a vertex v only if all the predecessors

of v have a pebble. Vertices with zero in-degree can be pebbled
at any time.

(5) A pebble can be removed any time.

The rules for black and white pebbling are as follows.

(1) All vertices of D start pebble-free.
(2) All vertices of D end pebble-free.
(3) Each vertex receives and loses a pebble at least once.
(4) A white pebble can be placed on a vertex at any time.
(5) A white pebble on vertex v turns black at the moment all the

predecessors of v are pebbled.
(6) A black pebble can be removed at any time, but no white pebble

can be removed.

The principle application of pebbling is to model computations. We
say that a vertex has been pebbled if it had a pebble placed on it at
some point. A pebbling scheme is a sequence of placing and removing
pebbles so that every vertex has been pebbled. The size of a pebbling
scheme is the maximum number of pebbles deployed at any step. The
black pebble number of an acyclic digraph D, denoted bp(D), is the
smallest size of a black pebbling scheme. Similarly, the black and white
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pebble number of an acyclic digraph D, denoted bwp(D), is the smallest
size of a black and white pebbling scheme. A black pebbling scheme,
or black and white pebbling scheme, is said to be monotonic if each
vertex is pebbled only one time. The monotonic black pebble number,
or monotonic black and white pebble number, for an acyclic digraph D is
denoted by mbp(D), or mbwp(D), respectively. The following relation
between the node search number and monotonic black pebble number,
or monotonic black and white pebble number, was proved in [97].

Theorem 4.17 ([97]). Given a graph G, let Ω(G) denote the set of
acyclic digraphs that are orientations of G. Let mmbp(G) be the min-
imum monotonic black pebble number over all digraphs in Ω(G), and
mmbwp(X) be the minimum monotonic black and white pebble number
over all digraphs in Ω(G). Then the following relationships hold.

(1) mmbp(G) = ns(G) = mmbwp(G).
(2) For all D ∈ Ω(G) with in-degree at most k,

bwp(D) ≤ mbwp(D) ≤ (k + 1)ns(G).

5. Open problems on searching games

The area of graph searching games is relatively new, there are several
open problems. We present a dozen of them, and note that more
problems can be found in the references.

(1) The problem of determining the edge search number is NP-
complete [108, 101]. This problem remains NP-complete for
graphs with a maximum vertex degree of 3 [105]. However,
whether the problem remains NP-complete for planar graphs
is still unknown. In fact, the complexity of determining the
search number of planar graphs in all search games mentioned
in Section 2 is unknown.

(2) The problems of designing efficient polynomial-time approxima-
tion algorithms for computing the search number of all search
games mentioned in Part 1 are wide open. There are only few
results for special classes of graphs. For example, Bodlaender
and Fomin [26] gave an O(n log n) time 2-approximation algo-
rithm for computing the pathwidth (or node search number) of
outerplanar graphs.

(3) Finding good lower bounds for search numbers is a challenge
for all search games mentioned in this chapter. There are few
results for lower bounds. For example, it is not clear how to
improve the following lower bound given by Alspach et al. [8]

es(G) ≥ max {δ(G) + g(G)− 2, χ(G)− 1},
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where the minimum vertex degree δ(G) ≥ 3, the girth g(G) ≥ 3,
and the chromatic number χ(G) ≥ 4.

(4) Megiddo et al. [108] showed that the edge search problem is
NP-hard. This problem belongs to NP by the monotonicity
result of [101], in which LaPaugh showed that recontamination
does not help to clear a graph. Using a reduction from the
edge search problem, we can easily show that the connected
edge search problem is also NP-hard. However, Yang et al.
[149, 150] showed that the connected search is not monotonic.
An interesting problem left open is whether the connected edge
search problem belongs to NP.

(5) In [90], Johnson et al. gave an min-max theorem between di-
rected treewidth and the number of searchers required to cap-
ture a robber in the strong-directed visible-robber game. How-
ever, the directed treewidth and the search number in this the-
orem are given by a constant factor between them. Whether
there is a modified version of the directed treewidth that has
an exact min-max theorem with the search number in the as-
sociated game remains an open problem.

(6) In [99], Kreutzer and Ordyniak gave examples showing that
neither the directed visible-robber game associated with DAG-
width nor the directed lazy-robber game associated with Kelly-
width are monotone. It is not clear if the ratio of the monotonic
search number to the search number is bounded by a constant
in both games. That is, it is unknown if there is a constant
c such that whenever k searchers have a winning strategy in
one of the games then ck searchers have a monotone winning
strategy.

(7) In [88], Hunter and Kreutzer conjectured that for a digraph,
the search number in the directed visible-robber game and that
in the directed lazy-robber game lie within constant factors of
one another.

(8) Yang and Cao [145] proved that the internal strong and internal
weak search problems are not monotonic. Although the internal
strong search game is not monotonic, they still proved it is in
NP. However, the problem of whether the internal weak search
game is in NP is still open.

(9) In [145], Yang and Cao showed by examples that the ratio of the
monotonic internal strong search number to the internal strong
search number may be as large as Ω(log n), where n is the num-
ber of vertices in the digraph. They conjecture that O(log n)
is an upper bound of the ratio for all digraphs. Another open
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problem is whether there is a constant c such that whenever k
searchers have a winning strategy in the internal weak search
game then ck searchers have a monotone winning strategy. We
conjecture that this constant is less than 2 for all digraphs.

(10) In [147], Yang and Cao proved the monotonicity of the mixed
weak searching problem using the crusade method proposed by
Bienstock and Seymour [24]. But they applied the LaPaugh’s
method to prove the monotonicity of the weak searching prob-
lem. Since LaPaugh’s method is more complicated than the
crusade method, an interesting open problem is how to estab-
lish a relation between the mixed weak searching and the weak
searching so that the monotonicity of the former implies the
monotonicity of the latter.

(11) Many relations between different search numbers are described
by inequalities, such as Theorems 2.1 and 3.16. The related
open problems are to find the necessary and sufficient conditions
for graphs or digraphs such that equalities hold. For example,
for which graphs does the edge search number equal the node
search number?

(12) Bodlaender and Kloks [27] gave a polynomial time algorithm for
computing the pathwidth of a graph with constant treewidth.
Since the edge search number of a graph equals the pathwidth
of its 2-expansion, we know that the edge search number of a
graph with constant treewidth is polynomial time computable.
However, the exponent in the running time of this algorithm
is large. Even for a graph with treewidth two, it takes at least
Ω(n11) time. The large exponent makes their algorithm imprac-
tical. Megiddo et al. [108] presented a linear time algorithm
for computing the edge search number of trees, and Peng et
al. [118] proposed a linear time algorithm to compute the op-
timal search strategy of trees. Yang et al. [152] presented a
linear time algorithm for computing the edge search number of
unicyclic graphs and some special cycle-disjoint graphs. The
problem then, is how to design efficient algorithms for comput-
ing the search number of graphs with small treewidth, such as
outerplanar graphs that have treewidth 2.

Part 2. Cops and Robbers

Cops and Robbers is one aspect of graph searching that has received
much recent attention. In this two-player game of perfect information,
a set of cops tries to capture a robber by moving at unit speed from
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vertex-to-vertex. More precisely, Cops and Robbers is a game played
on a reflexive graph (that is, there is a loop at each vertex). There are
two players consisting of a set of cops and a single robber. The game is
played over a sequence of discrete time-steps or rounds, with the cops
going first in round 0 and then playing alternate time-steps. The cops
and robber occupy vertices; for simplicity, the player is identified with
the vertex they occupy. The set of cops is referred to as C and the
robber as R. When a player is ready to move in a round they must
move to a neighbouring vertex. Because of the loops, players can pass,
or remain on their own vertex. Observe that any subset of C may move
in a given round.

The cops win if after some finite number of rounds, one of them
can occupy the same vertex as the robber (in a reflexive graph, this is
equivalent to the cop landing on the robber). This is called a capture.
The robber wins if he can evade capture indefinitely. A winning strategy
for the cops is a set of rules that if followed, result in a win for the cops.
A winning strategy for the robber is defined analogously.

If a cop is placed at each vertex, then the cops are guaranteed to win.
Therefore, the minimum number of cops required to win in a graph G is
a well-defined positive integer, named the cop number (or copnumber)
of the graph G. The notation c(G) is used for the cop number of a
graph G. If c(G) = k, then G is k-cop-win. In the special case k = 1,
G is cop-win (or copwin).

The game of Cops and Robbers was first considered by Quilliot [121]
in his doctoral thesis, and was independently considered by Nowakowski
and Winkler [115]. Both [115, 121] refer only to one cop. The intro-
duction of the cop number came in 1984 with Aigner and Fromme [2].
Many papers have now been written on cop number since these three
early works; see the surveys [5, 81] and the recent book of Bonato and
Nowakowski [37]. Cops and Robbers has even found recent application
in artificial intelligence and so-called moving target search; see Isaza et
al. [89] and Moldenhauer et al. [112].

Part 2 is a selective survey of recent results on Cops and Robbers,
focusing on algorithmic and probabilistic results, as well as the game
in infinite graphs. A much more exhaustive survey with proofs may
be found in the book [37]. This part begins with the case of cop-win
graphs in Section 6. Such graphs have a good characterization in terms
of an elimination ordering of their vertices. In Section 7 a discussion
of graphs with higher cop number is provided. The highlight here is
Meyniel’s conjecture, which gives an upper bound on the cop number
of connected graphs. The cop number in graph classes is discussed in
Section 8, algorithmic results in Section 9, random graphs in Section 10,
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Figure 1. A cop-win ordering of a cop-win graph.

and infinite graphs in Section 11. Part 2 closes with twelve of the most
important open problems in the field.

6. Cop-win graphs

The game of Cops and Robbers historically first considered only the
case of one cop, and that is our focus in the present section. The closed
neighbor set of a vertex x, written N [x], is the set of vertices joined to
x (including x itself). A vertex u is a corner if there is some vertex v
such that N [u] ⊆ N [v].

A graph is dismantlable if some sequence of deleting corners results
in the graph K1. For example, each tree is dismantlable: delete leaves
repeatedly until a single vertex remains. The same approach holds with
chordal graphs, which always contains at least two simplicial vertices
(that is, vertices whose neighbor sets are cliques). The following result
characterizes cop-win graphs.

Theorem 6.1 ([115]). A graph is cop-win if and only if it is dismant-
lable.

Cop-win (or dismantlable) graphs have a recursive structure, made
explicit in the following sense. Observe that a graph is dismantlable
if the vertices can be labeled by positive integers [n] = {1, 2, . . . , n},
in such a way that for each i < n, the vertex i is a corner in the
subgraph induced by {i, i + 1, . . . , n}. This ordering of V (G) is called
a cop-win ordering. See Figure 1 for a graph with vertices labeled by a
cop-win ordering. Cop-win orderings are sometimes called elimination
orderings, vertices from lower to higher index are deleted until only
vertex n remains.
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Let H be an induced subgraph of G formed by deleting one vertex.
The graph H is a retract of G if there is a homomorphism f from G
onto H so that f(x) = x for x ∈ V (H); that is, f is the identity on H.
The map f is called a retraction (or 1-point retraction or fold). For
example, the subgraph formed by deleting a vertex of degree 1 is a
retract. If u is a corner, then the mapping

f(x) =

{
v if x = u
x else

is a retraction (recall that our graphs are reflexive, so edges may map
to a single vertex).

Retracts play an important role in characterizing cop-win graphs.
The next theorem, due to Berarducci and Intrigila, shows that the cop
number of a retract never increases.

Theorem 6.2 ([19]). If H is a retract of G, then c(H) ≤ c(G).

Cop-win orderings suggest a kind of linear structure to cop-win
graphs; it roughly suggests that by “sweeping” from largest index ver-
tex to smallest in the ordering, the robber can be captured. This intu-
ition is made precise by the following winning strategy for the cops—
first made explicit by Clarke and Nowakowski [50]—in a cop-win graph
exploiting the cop-win ordering.

Cop-win (or No-backtrack) Strategy [50]. Assume that [n] is a
cop-win ordering of G, and for 1 ≤ i ≤ n define

Gi = G ¹ {n, n− 1, . . . , i}.
Note that G1 = G and Gn is just the vertex n. For each 1 ≤ i ≤ n− 1,
let fi : Gi → Gi+1 be the retraction map from Gi to Gi+1 mapping i
onto a vertex that covers i in Gi. Define F1 to be the identity mapping
on G : F1(x) = x for all x ∈ V (G). For 2 ≤ i ≤ n define

Fi = fi−1 ◦ · · · ◦ f2 ◦ f1.

In other words, the Fi is the mapping formed by iteratively retracting
corners 1, 2, . . . i−1. As the fi are homomorphisms, so are the Fi (recall
that all our graphs are reflexive). Further, for all i, as the fi are
retractions, Fi(x) and Fi+1(x) are either equal or joined. If the robber
is on vertex x in G, then think of Fi(x) as the robber’s shadow on Gi.
See Figure 2.

The Cop-win Strategy is described as follows. The cop begins on
Gn (the vertex n), which is the shadow of the robber’s position under
Fn (note that everything in G maps to n under Fn). Suppose that the
robber is on u and the cop is occupying the shadow of the robber in



GRAPH SEARCHING AND RELATED PROBLEMS 29

Gi equaling Fi(u). If the robber moves to v, then the cop moves onto
the image Fi−1(v) of R in the larger graph Gi−1.

Theorem 6.3 ([50]). The Cop-win Strategy results in a capture for the
cop in at most n moves.

If both players are playing optimally (that is, the cop is trying to
minimize the length of the game, while the robber is trying to maximize
it), then in cop-win graph, a cop can win in no more than n− 3 moves
if n ≥ 5. See Bonato et al. [33].

Note that the dismantling characterization of Theorem 6.1 fails badly
for infinite graphs. For example, an infinite one-way path (or ray) is
dismantlable (if we allow infinitely many vertex deletions), but fails
to be cop-win. There is a characterization of cop-win graphs of any
order (finite or infinite) that we include here, owing to Nowakowski
and Winkler [115].

Define a relation ¹ on vertices. The relation is defined recursively
on ordinals, with x ≤0 x for all vertices u (in other words, ≤0 is just
the diagonal or equality relation on V (G)). Observer that u ≤α v will
mean that when a robber is on vertex u, a cop is on vertex v and it
is the robber’s turn to move, the robber will lose in at most α rounds.
For an ordinal α, define u ≤α v if and only if for each a ∈ N [u] there
exists a b ∈ N [v] such that a ≤β b for some β < α. Let ρ be the least
ordinal such that ≤ρ=≤ρ+1 and define ¹=≤ρ.

Note that if ρ < α, then the relation ≤ρ is a subset of ≤α. As
such relations are bounded above in cardinality, the ordinal ρ exists. A
binary relation on a set X is trivial if it equals the Cartesian product
of X with itself, X ×X.
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F(R)
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Figure 2. The robber and his shadow F3(R) = f2 ◦ f1(R).
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Theorem 6.4 ([115]). A graph G is cop-win if and only if the relation
¹ on V (G) is trivial.

A generalization of Theorem 6.4 has been found for graphs with
higher cop number. Given a graph G, define the kth strong power of
G, written Gk

£, to have vertices the ordered k-tuples from G, with two
tuples joined if they are equal or joined in each coordinate. See Figure 3
for an example. The positions of k-many cops in G are identified with
a single vertex in Gk

£. The definition of the strong power allows us to
simulate movements of the cops in G by movements of a single cop in
Gk

£.
Let P = Gk

£. For i ∈ N, the relation ≤i on V (G) × V (P ) is defined
as follows by induction on i. For x ∈ V (G) and p ∈ V (P ), x ≤0 p
if in position p, at least one of the k cops is occupying x. For i > 0,
x ≤i p if and only if for each u ∈ N [x] there exists a v ∈ N [p] such
that u ≤j v for some j < i. Just as in the cop-win case, the relations
≤i are non-decreasing sets in i, and hence, there is an ordinal M such
that ≤M=≤M+1 and set ¹=≤M . Although the notation ¹ in this
case clashes with the one for cop-win graphs, we use it again here for
simplicity.

Theorem 6.5 ([49]). A graph G is k-cop-win if and only if there exists
p ∈ V (P ) such that x ¹ p for every x ∈ V (G).

7. Higher cop number

Graphs with higher cop number are much less understood than cop-
win graphs. Hence, the focus is on finding bounds on the cop number.

7.1. Upper bounds. An elementary upper bound for the cop number
is

c(G) ≤ γ(G), (7.1)

where γ(G) is the domination number of G. In general graphs, the
inequality (7.1) is far from tight (consider a path, for example).

=

Figure 3. The strong power (P3)
2
£
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We do not know how large the cop number of a connected graph can
be as a function of its order. For a positive integer n, let c(n) be the
maximum value of c(G), where G is of order n. Meyniel’s conjecture
states that

c(n) = O(
√

n).

The conjecture was mentioned in Frankl’s paper [74] as a personal
communication to him by Henri Meyniel in 1985 (see page 301 of [74]
and reference [8] in that paper). Meyniel’s conjecture stands out as
one of the deepest (if not the deepest) problems on the cop number.

For many years, the best known upper bound for general graphs was
the one proved by Frankl [74].

Theorem 7.1 ([74]). If n is a positive integer, then

c(n) ≤ O

(
n

log log n

log n

)
.

The key to proving Theorem 7.1 is the notion of cops guarding an
isometric path. For a fixed integer k ≥ 1, an induced subgraph H of
G is k-guardable if, after finitely many moves, k cops can move only
in the vertices of H in such a way that if the robber moves into H at
round t, then he will be captured at round t+1. For example, a clique
or a closed neighbor set (that is, a vertex along with its neighbors)
in a graph are 1-guardable. Given a connected graph G, the distance
between vertices u and v in G, is denoted dG(u, v). A path P in G is
isometric if for all vertices u and v of P,

dP (u, v) = dG(u, v).

The following theorem of Aigner and Fromme [2] on guarding isometric
paths has found a number of applications.

Theorem 7.2. [2] An isometric path is 1-guardable.

In 2008 Chinifooroshan [45] gave an improved upper bound once
again using a guarding argument.

Theorem 7.3 ([45]). For a positive integer n

c(n) = O

(
n

log n

)
. (7.2)

The bound (7.2), therefore, represents the first important step forward
in proving Meyniel’s conjecture in over 25 years. The key to proving
(7.2) comes again from the notion of guarding an induced subgraph.

An improvement exists to the bound (7.2) in Theorem 7.3. The
following theorem was proved independently by three sets of authors.
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Theorem 7.4 ([75, 103, 130]). For a positive integer n

c(n) ≤ O

(
n

2(1−o(1))
√

log2 n

)
. (7.3)

The bound in (7.3) is currently the best upper bound for general graphs
that is known, but it is still far from proving Meyniel’s conjecture or
even the soft version of the conjecture.

7.2. Lower bounds. A useful theorem of Aigner and Fromme [2] is
the following. The girth of a graph is the length of minimum order
cycle. The minimum degree of G is written δ(G).

Theorem 7.5 ([2]). If G has girth at least 5, then c(G) ≥ δ(G).

Frankl [74] proved the following theorem generalizing Theorem 7.5
(which is the case t = 1).

Theorem 7.6 ([2]). For a fixed integer t ≥ 1, if G has girth at least
8t− 3 and δ(G) > d, then c(G) > dt.

Meyniel’s conjecture states that the cop number is at most approx-
imately

√
n. For graphs with large cop number near the conjectured

bound, consider projective planes. A projective plane consists of a set
of points and lines satisfying the following axioms.

(1) There is exactly one line incident with every pair of distinct
points.

(2) There is exactly one point incident with every pair of distinct
lines.

(3) There are four points such that no line is incident with more
than two of them.

Finite projective planes have q2 + q +1 points for some integer q > 0
(called the order of the plane). For a given projective plane P , define
G(P ) to be the bipartite graph with red vertices representing the points
of P, and the blue vertices representing the lines. Vertices of different
colors are joined if they are incident. This is the incidence graph of
P. See Figure 4 for G(P ), where P is the Fano plane (that is, the
projective plane of order 2). The incidence graph of the Fano plane is
isomorphic to the famous Heawood graph.

Hence, Theorem 7.5 proves that c(G(P )) ≥ q + 1. As proven in
PraÃlat [119], c(G(P )) = q + 1. However, the orders of G(P ) depend on
the orders of projective planes. The only orders where projective planes
are known to exist are prime powers; indeed, this is a deep conjecture
in finite geometry. What about integers which are not prime powers?
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An infinite family of graphs (Gn : n ≥ 1) is Meyniel extremal if there

is a constant d such that for sufficiently large n, c(Gn) ≥ d
√
|V (Gn)|.

Recall the famous Bertrand postulate.

Theorem 7.7 ([44]). For any integer x > 1, there is a prime in the
interval (x, 2x).

In PraÃlat [119] a Meyniel extremal family was given using incidence
graphs of projective planes and Theorem 7.7. Using Bertrand’s postu-
late, it was shown that

c(n) ≥
√

n

8
for n ≥ 72. Using this theorem and a result from number theory, it was
shown in PraÃlat [119] that for sufficiently large n,

c(n) ≥
√

n

2
− n0.2625. (7.4)

Define mk to be the minimum order of a connected graph G satisfying
c(G) ≥ k. Define Mk to be the minimum order of a connected k-cop-
win graph. It is evident that the mk are monotonically increasing, and
mk ≤ Mk. A recent work [14] establishes that

m3 = 10.

The fact that m3 ≥ 10 follows by a computer search. The upper bound
follows by considering the Petersen graph, which is 3-cop-win. In fact,
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Figure 4. The Fano plane and its incidence graph.
Lines are represented by triples.
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a computer search in Baird and Bonato [14] shows the surprising fact
that the Petersen graph is the unique smallest order isomorphism type
of connected graph with cop number 3.

Define fk(n) to be the number of non-isomorphic connected k-cop-
win graphs of order n (that is, the unlabelled graphs G of order n
with c(G) = k). Define g(n) to be the number of non-isomorphic
(not necessarily connected) graphs of order n, and gc(n) the number
of non-isomorphic connected graphs of order n. Trivially, for all k,
fk(n) ≤ g(n). The table below presents the values of g, gc, f1, and
f2 for small orders. The values of g and gc come from [133], f1 was
computed by checking for cop-win orderings [115], while f2 and f3 were
computed using Algorithm 1 given in Section 9.

order n g(n) gc(n) f1(n) f2(n) f3(n)

1 1 1 1 0 0
2 2 1 1 0 0
3 4 2 2 0 0
4 11 6 5 1 0
5 34 21 16 5 0
6 156 112 68 44 0
7 1044 853 403 450 0
8 12346 11117 3791 7326 0
9 274668 261080 65561 195519 0
10 12005168 11716571 2258313 9458257 1

The next theorem sets up an unexpected connection between Meyniel’s
conjecture and the order of mk.

Theorem 7.8 ([14]). (1) mk = O(k2).
(2) Meyniel’s conjecture is equivalent to the property that

mk = Ω(k2).

Hence, if Meyniel’s conjecture holds, then Theorem 7.8 implies that
mk = Θ(k2).

8. Graph classes

Planar graphs have inspired some of the deepest results in graph
theory, most notably the Four Color Theorem (which states that every
planar graph has chromatic number at most four; see Appel, Haken,
and Koch [12]). A graph is planar if it can be drawn in R2 without
any two of its edges crossing. Aigner and Fromme [2] showed in fact
that planar graphs require no more than three cops.
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Theorem 8.1 ([2]). If G is a planar graph, then c(G) ≤ 3.

The idea of the proof of Theorem 8.1 is to increase the cop territory ;
that is, vertices that if the robber moved to he would be caught. Hence,
the number of vertices the robber can move to without being caught is
eventually is reduced to the empty set, and so the robber is captured.

For a fixed graph H, Andreae [9] generalized this result by prov-
ing that the cop number of a K5-minor-free graph (or K3,3-minor-free
graph) is at most 3 (recall that planar graphs are exactly those which
are K5-minor-free and K3,3-minor-free). Andreae [10] also proved that
for any graph H the cop number of the class of H-minor-free graphs is
bounded above by a constant.

Less is known about the cop number of graphs with positive genus.
As such, our survey of such graphs is brief. The main conjecture in
this area is due to Schroeder. In [129], Schroeder conjectured that if G
is a graph of genus g, then c(G) ≤ g + 3. Quilliot [123] had shown the
following.

Theorem 8.2 ([123]). If G is a graph of genus g, then c(G) ≤ 2g + 3.

In the same paper as the conjecture, Schroeder showed the following.

Theorem 8.3 ([129]). If G is a graph of genus g, then

c(G) ≤
⌊

3g

2

⌋
+ 3.

Schroeder also proved the following theorem.

Theorem 8.4 ([129]). If G is a graph that can be embedded on a torus,
then c(G) ≤ 4.

A graph G is outerplanar if it has an embedding in the plane with
the following properties.

(1) Every vertex lies on a circle.
(2) Every edge of G either joins two consecutive vertices around

the circle or is a chord across the circle.
(3) If two chords intersect, then they do so at a vertex.

Clarke proved the next result in her doctoral thesis.

Theorem 8.5 ([48]). If G be an outerplanar graph, then c(G) ≤ 2.

Theorem 8.5 was generalized by Theis [142] to series-parallel graphs.
Lu and Peng [103] showed that Meyniel’s conjecture holds in the class

of graphs with diameter two. The proof uses the notion of guarding
subgraph, but also uses a randomized argument.
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Theorem 8.6 ([103]). If G is a graph on n vertices with diameter two,
then

c(G) ≤ 2
√

n− 1. (8.1)

The same bound (8.1) was also shown in [103] in the case when G
is bipartite and of diameter at most three. The incidence graphs of
projective planes are bipartite of diameter three, and so show that the
bound (8.1) is asymptotically tight in that class.

9. Algorithmic results

Another approach to the Cops and Robbers game is an algorithmic
one. Consider the following two graph decision problems.

k-COP NUMBER: Given a graph G and a positive integer k, is c(G) ≤
k?

k-FIXED COP NUMBER: Given a graph G and a fixed positive integer
k, is c(G) ≤ k?

The main difference between the two problems is that in k-COP NUM-
BER the integer k may be a function of n, and so grows with n. In
k-FIXED COP NUMBER, k is fixed and not part of the input, and so is
independent of n.

There is the following result.

Theorem 9.1 ([19, 83]). The problem FIXED COP NUMBER is in P.

An algorithm from Bonato et al. [31] is described which may be used to
prove Theorem 9.1. Given a graph G, recall that the kth strong power
of G, written Gk

£, is the strong product of G with itself k times. For
a set X, define 2X to be the set of subsets of X. For S ⊆ V (G), define
NG[S] to be the union of the closed neighbor sets of vertices in S.

Figure 5. The graph on the left is a cop-win non-
outerplanar graph, while the graph on the right is non-
outerplanar with cop number two.
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Algorithm 1 Check k cop number

Require: G = (V, E), k ≥ 1
1: initialize f(u) to V (G) \NG[u], for all u ∈ V (Gk

£)
2: repeat
3: for all uv ∈ E(Gk

£) do
4: f(u) ← f(u) ∩NG[f(v)]
5: f(v) ← f(v) ∩NG[f(u)]
6: end for
7: until the value of f is unchanged
8: if there exists u ∈ V (Gk

£) such that f(u) = ∅ then
c(G) ≤ k

9: else
c(G) > k

10: end if

Theorem 9.2 ([31]). Suppose k ≥ 1 is an integer. Then c(G) > k if
and only if there is a mapping f : V (Gk

£) → 2V (G) with the following
properties.

(1) For every u ∈ V (Gk
£),

∅ 6= f(u) ⊆ V (G) \NG[u].

(2) For every uv ∈ E(Gk
£),

f(u) ⊆ NG[f(v)].

Consider Algorithm 1 for determining whether c(G) ≤ k based on
Theorem 9.2. The following theorem gives Theorem 9.1 as a corollary.

Theorem 9.3 ([31]). Algorithm 1 runs in time O(n3k+3).

If k is not fixed (and hence, can be a function of n), then the problem
becomes less tractable.

Theorem 9.4 ([73]). The problem k-COP NUMBER is NP-hard.

Theorem 9.4 does not say that k-COP NUMBER is in NP; that is
an open problem! See Section 12 below. Theorem 9.4 is proved in
Fomin et al. [73] by using a reduction from the following NP-complete
problem:

DOMINATION: Given a graph G and an integer k ≥ 2, is γ(G) ≤ k?

10. Random graphs

Random graphs are a central topic in graph theory; however, only
recently have researchers considered the cop number of random graphs.
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Define a probability space on graphs of a given order n ≥ 1 as follows.
Fix a vertex set V consisting of n distinct elements, usually taken as
[n], and fix p ∈ [0, 1]. Define the space of random graphs of order n
with edge probability p, written G(n, p) with sample space equaling the

set of all 2(n
2) (labeled) graphs with vertex set V, and

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)|.

Informally, G(n, p) may be viewed as the space of graphs with vertex
set V , so that two distinct vertices are joined independently with prob-
ability p. Even more informally: toss a (biased) coin to determine the
edges of your graph. Hence, V does not change, but the number of
edges is not fixed: it varies according to a binomial distribution with
expectation

(
n
2

)
p. Despite the fact that G(n, p) is a space of graphs,

it is often called the random graph of order n with edge probability p.
Random graphs were introduced in a series of papers by Erdős and
Rényi [61, 59, 60]. See the book [28] for a modern reference.

The cases when p is fixed are considered, and when it is a func-
tion of n. Graph parameters, such as the cop number, become random
variables in G(n, p). For notational ease, the cop number of G(n, p) is
referred to simply by c(G(n, p)).

An event holds asymptotically almost surely (or a.a.s. for short) if
it holds with probability tending to 1 as n → ∞. For example, if p is
constant, then a.a.s. G(n, p) is diameter two and not planar.

10.1. Constant p. The cop number of G(n, p) was studied in Bonato
et al. [35] for constant p, where the following result was proved. For
p ∈ (0, 1) or p = p(n) = o(1), define

Ln = log 1
1−p

n.

Theorem 10.1 ([35]). Let 0 < p < 1 be fixed. For every real ε > 0,
a.a.s.

(1− ε)Ln ≤ c(G(n, p)) ≤ (1 + ε)Ln. (10.1)

In particular,
c(G(n, p)) = Θ(log n).

The upper bound in Theorem 10.1 follows by considering the domina-
tion number of G(n, p) [56], while the lower bounds follows by consid-
ering an adjacency property. If the case of p = 1/2 is considered, then
G(n, p) corresponds to the case of uniformly choosing a labeled graph
of order n from the space of all such graphs. Hence, Theorem 10.1
may be interpreted as saying “most” finite graphs of order n have cop
number approximately log n.
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Properties of randomly chosen k-cop-win graphs (with the uniform
distribution) are described next. For this, it is equivalent to work in
the probability space G(n, 1/2). Let cop-win be the event in G(n, 1/2)
that the graph is cop-win and let universal be the event that there is
a universal vertex. If a graph has a universal vertex w, then it is cop-
win; in a certain sense, graphs with universal vertices are the simplest
cop-win graphs. The probability that a random graph is cop-win can
be estimated as follows:

P(cop-win) ≥ P(universal) = n2−n+1 −O(n22−2n+3)

= (1 + o(1))n2−n+1.

A recent surprising result of Bonato et al. [36] showed this lower bound
is in fact the correct asymptotic value for P(cop-win).

Theorem 10.2 ([36]). In G(n, 1/2),

P(cop-win) = (1 + o(1))n2−n+1.

Hence, almost all cop-win graphs contain a universal vertex.

10.2. The dense case. Now consider the cop number of dense random
graphs, with average degree pn at least

√
n. The main results in this

case were given in Bonato et al. [38].

Theorem 10.3 ([38]). (1) Suppose that p ≥ p0 where p0 is the
smallest p for which

p2/40 ≥ log
(
(log2 n)/p

)

log n

holds. Then a.a.s.

Ln− L(
(p−1Ln)(log n)

) ≤ c(G(n, p)) ≤ Ln− L(
(Ln)(log n)

)
+ 2.

(2) If (2 log n)/
√

n ≤ p = o(1) and ω(n) is any function tending to
infinity, then a.a.s.

Ln− L(
(p−1Ln)(log n)

) ≤ c(G(n, p)) ≤ Ln + L(ω(n)).

By Theorem 10.3, the following corollary gives a concentration result
for the cop number. In particular, for a wide range of p, the cop number
of G(n, p) concentrates on just the one value Ln.

Corollary 10.4 ([38]). If p = n−o(1) and p < 1, then a.a.s.

c(G(n, p)) = (1 + o(1))Ln.

From Theorem 10.3 part (1) it follows that if p is a constant, then
there is the concentration result that

c(G(n, p)) = Ln− 2L log n + Θ(1) = (1 + o(1))Ln.
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10.3. The sparse case and Zig-Zag theorem. Bollobás, Kun, and
Leader [29] established the following bounds on the cop number in the
sparse case, when the expected degree is np = O(n1/2).

Theorem 10.5 ([29]). If p(n) ≥ 2.1 log n/n, then a.a.s.

1

(np)2
n

1
2

log log(np)−9
log log(np) ≤ c(G(n, p)) ≤ 160000

√
n log n . (10.2)

In particular, Theorem 10.5 proves Meyniel’s conjecture for random
graphs, up to a logarithmic factor of n from the upper bound in (10.2).
Recent work by PraÃlat and Wormald [120] removes the log n factor in
the upper bound of (10.2) and hence, proves the Meyniel bound for
random graphs.

It would be natural to assume that the cop number of G(n, p) is
close to

√
n also for np = nα+o(1), where 0 < α < 1/2. The so-called

“Zig-Zag Theorem” of ÃLuczak and PraÃlat [104] demonstrated that the
actual behaviour of c(G(n, p)) is much more complicated.

Theorem 10.6 (Zig-Zag Theorem, [104]). Let 0 < α < 1, and d =
d(n) = np = nα+o(1).

(1) If 1
2j+1

< α < 1
2j

for some j ≥ 1, then a.a.s.

c(G(n, p)) = Θ(dj) .

(2) If 1
2j

< α < 1
2j−1

for some j ≥ 1, then a.a.s.

Ω
( n

dj

)
= c(G(n, p)) = O

(
n log n

dj

)
.

Figure 6. The zig-zag shaped graph of the cop number
of G(n, p).
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Consider the function f : (0, 1) → R defined by

f(x) =
log c(G(n, nx−1))

log n
,

where c(G(n, nx−1)) is the median of the cop number for G(n, p). See
Figure 6, which justifies the Theorem 10.6’s moniker. In particular,

f(x) =

{
αj if 1

2j+1
≤ α < 1

2j
for some j ≥ 1;

1− αj if 1
2j
≤ α < 1

2j−1
for some j ≥ 1.

11. Infinite graphs

Infinite graphs exhibit properties often quite different than finite
ones. In this regard, the cop number is no exception. For example, the
ray (that is, the one-way infinite path) is an infinite tree with infinite
cop number: one robber can always stay ahead of finitely many cops.

11.1. Cop density. When dealing with countable graphs, note that
they are limits of chains of finite graphs. To analyze the cop num-
ber of infinite graphs, consider the cop density of a finite graph first
introduced in [35]. Define

Dc(G) =
c(G)

|V (G)| .

Note that Dc(G) is a rational number in [0, 1]. Every countable graph
G is the limit of a chain of finite graphs, and there are infinitely many
distinct chains with limit G. Suppose that G = limn→∞ Gn, where
C = (Gn : n ∈ N) is a fixed chain of induced subgraphs of G. The
chain C is a full chain for G. Define

D(G, C) = lim
n→∞

Dc(Gn),

if the limit exists (and then it is a real number in [0, 1]). This is the cop
density of G relative to C; if C is clear from context, this is referred to
as the cop density of G.

The upper cop density of G, written UD(G), is defined as

sup{D(G, C) : C is a full chain for G}.
Note that UD(G) does not depend on the chain, and is a parameter of
G.

For a positive integer n, a graph G is strongly n-e.c. if for all disjoint
finite sets of vertices A and B from G with |A| ≤ n, there is a vertex z
correctly joined to A and B. Note that the infinite random graph is the
unique isomorphism type of countable graph which is strongly n-e.c.
for all n; see [41]. The following result, proved in Bonato et al. [35],
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finds connections between infinite-cop-win graphs and the strongly 0-
and 1-e.c. properties.

Theorem 11.1 ([35]). (1) If G is strongly 1-e.c., then c(G) is in-
finite.

(2) If c(G) is infinite, then G satisfies the strongly 0-e.c. property.

If G is strongly 1-e.c., then the cop density of G may be any real
number in [0, 1]. This property applies, therefore, to a large number
of graphs: for each n ≥ 0, there are 2ℵ0 many non-isomorphic count-
able graphs that are strongly n-e.c. but not strongly (n + 1)-e.c.; see
Theorem 4.1 of [32].

Theorem 11.2 ([35]). If G is strongly 1-e.c., then for all r ∈ [0, 1],
there is a chain C in G such that D(G, C) = r.

Our next result completely characterizes the upper cop density of a
graph G: UD(G) takes on one of the two values 0 or 1, and equals 1
exactly when G is strongly 0-e.c. This fact, proven in [35], is somewhat
unexpected.

Theorem 11.3 ([35]). The following are equivalent.

(1) UD(G) = 1.
(2) UD(G) > 0.
(3) G is strongly 0-e.c.

We note that the strongly 0-e.c. graphs are precisely the spanning
subgraphs of the infinite random graph; see Cameron [41].

11.2. Chordal graphs. As another instance where results from finite
graphs do not translate to infinite ones, consider chordal graphs. The
graph G is chordal if each cycle of length at least four has a chord. A
vertex of G is simplicial if its neighborhood induces a complete graph.
Every finite chordal graph contains at least two simplicial vertices,
and the deletion of a simplicial vertex leaves a chordal graph. As a
simplicial vertex is a corner, a finite chordal graph is dismantlable and
so cop-win.

However, an infinite tree containing a ray is chordal but not cop-win.
Such trees have infinite diameter. Inspired by a question of Martin
Farber which asked if infinite chordal graphs (more generally, bridged
graphs) of finite diameter are cop-win, it was shown in Hahn et al. [82]
that there exist infinite chordal graphs of diameter two that are not
cop-win. The difficulty lies in finding examples with finite diameter.

Theorem 11.4 ([82]). For each infinite cardinal κ, there exist chordal,
robber-win graphs of order κ with diameter two.
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11.3. Large families of cop-win graphs. From Theorem 11.4, the
cop number of infinite graphs behaves rather differently than in the
finite case. Vertex-transitive cop-win finite graphs are cliques; see
Nowakowski and Winkler [115]. However, this fails badly in the in-
finite case, which is the focus of this section.

A class of graphs is large if for each infinite cardinal κ there are 2κ

many non-isomorphic graphs of order κ in the class. In other words, a
large class contains as many as possible non-isomorphic graphs of each
infinite cardinality. For example, the classes of all graphs, all trees,
and all k-chromatic graphs for k finite are large. Recall that a graph
G is vertex-transitive if for each pair of vertices x and y there is an
automorphism of G mapping x to y. The following result of Bonato et
al. [34] showed that for any integer k > 0 there are large families of
k-cop-win graphs that are vertex-transitive.

Theorem 11.5 ([34]). The class of cop-win, vertex-transitive graphs
with the property that the cop can win in two moves is large.

To describe the large family in Theorem 11.5, recall some properties
of the strong product of a set of graphs over a possibly infinite index
set. Let I be an index set. The strong product of a set {Gi : i ∈ I} of
graphs is the graph £i∈IGi defined by

V (£i∈IGi) = {f : I →
⋃
i∈I

V (Gi) : f(i) ∈ V (Gi) for all i ∈ I},

E(£i∈IGi) = {fg : f 6= g and for all i ∈ I,

f(i) = g(i) or f(i)g(i) ∈ E(Gi)}.
products exhibit unusual properties if there are infinitely many factors.

Fix a vertex f ∈ V (£i∈IGi) and define the weak strong product of
{Gi : i ∈ I} with base f as the subgraph £I

fGi of £i∈IGi induced
by the set of all g ∈ V (£i∈IGi) such that {i ∈ I : g(i) 6= f(i)} is
finite. The graph £I

fGi is connected if each factor is, and if |I| ≤ κ

and |V (Gi)| ≤ κ for each i ∈ I, then |V (£I
fGi)| ≤ κ. For i ∈ I, the

projection mapping πi : £I
fGi → Gi is defined by πi(g) = g(i).

Let {Gi : i ∈ I} be a set of isomorphic copies of G. Denote by £IG
the strong product £i∈IGi. If f ∈ V (£IG) is fixed, denote by GI

f the

weak strong product £I
fG with base f . One particular power of a graph

is of special interest as it allows us to construct vertex-transitive graphs
out of non-transitive ones. Let κ be a cardinal, and let H be a graph
of order κ. Let I = κ×V (H) and define f : I → V (H) by f(β, v) = v.
The power HI

f of H with base f will be called the canonical power of

H and will be denoted by HH .
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As automorphisms of the factors applied coordinate-wise yield an
automorphism of the product, it follows that the weak strong product
of vertex-transitive graphs is vertex-transitive. However, the following
technical lemma from [34] demonstrates the paradoxical property that
if there are infinitely many factors, the weak strong product may be
vertex-transitive even if none of the factors are!

Lemma 11.6 ([34]). If H is an infinite graph, then the canonical power
of HH is vertex-transitive.

12. A dozen problems on Cops and Robbers

To serve as a record and a challenge, we state twelve open problems
on Cops and Robbers. These are arguably the most central (and rele-
vant) problems in the field at the moment. Solutions to problems (1)
and (11), in particular, would be exceptional breakthroughs.

(1) Most likely the deepest open problem in the area is to settle
Meyniel’s conjecture: If G is a graph of order n, then

c(G) = O(
√

n). (12.1)

(2) An easier problem than (1) would to settle the so-called soft
Meyniel’s conjecture: For a fixed constant ε > 0,

c(n) = O(n1−ε),

(3) Meyniel’s conjecture remains open for familiar graph classes.
For example, does it hold in graphs whose chromatic number is
bounded by some constant k?

(4) While the parameters mk are non-increasing, an open problem
is to determine whether the Mk are in fact non-increasing. A
possibly more difficult problem is to settle whether mk = Mk

for all k ≥ 1.
(5) Can the lower bound (7.4)

c(n) ≥
√

n

2
− n0.2625,

be improved for sufficiently large n?
(6) For k > 1, it is conjectured in [36] that almost all k-cop-win

graphs in fact have a dominating set of cardinality k. If this is
the case, then the number labeled k-cop-win graphs of order n
satisfies

Fk(n) = 2o(n)
(
2k − 1

)n−k
2(n−k

2 ).

(7) Characterize the planar graphs with cop number 1, 2, and 3.
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(8) Determine the cop number of the giant component of G(n, p),
where p = Θ(1/n). In particular, show that the cop number is
a.a.s. O(

√
n).

(9) Schroeder’s conjecture: If G is a graph of genus g, then c(G) ≤
g + 3.

(10) Is the decision problem k-COP NUMBER in NP?
(11) Is COP NUMBER EXPTIME-complete? Goldstein and Rein-

gold [80] proved that the version of the Cops and Robbers game
on directed graphs is EXPTIME-complete. They also proved
that the version of the game on undirected graphs when the
cops and the robber are given their initial positions is also EX-
PTIME-complete.

(12) Are there large classes of infinite cop-win graphs whose mem-
bers are k-chromatic, where k ≥ 2 is an integer?
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Algorithms and Combinatorics, 14, Springer, Berlin, 1997, pp. 333–351.

[42] J. Chalopin, V. Chepoi, N. Nisse, Y. Vaxés, Cop and robber games when the
robber can hide and ride, Technical Report, INRIA-RR7178, Sophia Antipolis,
France, Jan. 2010.

[43] M. Chastand, F. Laviolette, N. Polat, On constructible graphs, infinite bridged
graphs and weakly cop-win graphs, Discrete Mathematics, 224:61–78, 2000.
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