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Abstract. We introduce a new graph parameter called the burning
number, inspired by contact processes on graphs such as graph boot-
strap percolation, and graph searching paradigms such as Firefighter.
The burning number measures the speed of the spread of contagion in a
graph; the lower the burning number, the faster the contagion spreads.
We provide algorithmic results on the burning number, and prove the
corresponding graph decision problem is NP-complete even when re-
stricted to graph classes such as planar graphs, disconnected graphs, or
bipartite graphs.

1 Introduction

Suppose you were attempting to spread gossip, a meme, or some other social
contagion on a social networking site such as Facebook or Twitter. Our assump-
tions, similar to those in the recent study on the spread of emotional contagion
in Facebook [13], are that in-person interaction and nonverbal cues are not nec-
essary for the spread of the contagion. Hence, agents in the network spread the
contagion to their friends or followers, and the contagion propagates over time.
If the goal was to minimize the time it took for the contagion to reach the entire
network, then which users would you target with the contagion, and in which
order? Related questions emerge in study of the spread of social influence, which
is an active topic in social network analysis; see, for example, [7,11,12,15,16,3].
As a simplified, deterministic approach to these questions, we consider a new
approach involving a graph process which we call burning. Burning is inspired
by graph theoretic processes like Firefighting [4,5,6,9], graph cleaning [1], and
graph bootstrap percolation [2].

Graph burning may be viewed as a one-player game, where the player at-
tempts to burn all the nodes as quickly as possible. Throughout, we work with
simple, undirected, and finite graphs. There are discrete time-steps or rounds.
Each node is either burned or unburned ; if a node is burned, then it remains in
that state until the end of the game. Every round, the player chooses a node to
burn. Once a node is burned in round t, each of its unburned neighbours becomes
burned in round t+1. In every round, the player chooses one additional unburned
node to burn (if such a node is available). The game ends when all nodes are
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burned. The burning number of a graph G, written by b(G), is the minimum
number of rounds needed for the game to end. For example, it is straightforward
to see that b(Kn) = 2. However, even for paths computing the burning number
is less trivial; in fact, b(Pn) = ⌈n1/2⌉ as we prove below in Theorem 2.

Burning may be viewed as a simplified model for the spread of social con-
tagion in a social network such as Facebook or Twitter. The lower the value of
b(G), the easier it is to spread such contagion in the graph G. Suppose that in
the process of burning a graph G, we eventually burned the whole graph G in k

steps, and for each i, 1 ≤ i ≤ k, we denote the node that we burn in the i-th step
by xi. We call such a node simply a source of fire. The sequence (x1, x2, . . . , xk)
is called a burning sequence for G. With this notation, the burning number of
G is the length of a shortest burning sequence for G; such a burning sequence
is referred to as optimal. For example, for the path P4 with nodes v1, v2, v3, v4,
the sequence (v2, v4) is an optimal burning sequence. See Figure 1.

Fig. 1: Burning the path P4.

Note that for a G with at least two nodes, b(G) ≥ 2. Unlike many graph
parameters, the burning number of a disconnected graph G with components
G1, G2, . . . , Gt, t ≥ 2, does not necessarily follow the equality b(G) = b(G1) +
b(G2) + · · · + b(Gt). For example, let G be a disjoint union of t paths of order
2. One way to burn G is to burn exactly one node of the first t − 1 paths
in the first t − 1 steps, and then burn the last P2 in 2 steps. Hence, we have
that b(G) ≤ (t − 1) + 2 = t + 1, while the sum of the burning numbers of the
components is 2t.

In this extended abstract, we focus on determining the algorithmic complex-
ity of the burning number of graphs. Specifically, we will consider the following
algorithmic problem.

Problem: Burning Number

Instance: A finite simple graph G with V (G) = {v1, v2, . . . , vn}, and an integer
k ≥ 2.

Question: Is b(G) ≤ k? In other words, does G contain a burning sequence
(x1, x2, . . . , xk)?

Our main result is that the Burning Number problem is NP-complete when
k ≥ 3 (it is in P if k = 2; see Theorem 5). Hence, burning a graph in an optimal
fashion is “hard”.

Theorem 1. Given a graph G and a positive integer k ≥ 3, the decision problem
b(G) ≤ k is NP-complete even when restricted to planar or disconnected graphs.



As a corollary, we derive that the Burning Number problem is hard even on
bipartite graphs.

Corollary 1. Given a graph G and a positive integer k ≥ 3, the decision problem
b(G) ≤ k is NP-complete for bipartite graphs.

The strategy of the proof of Theorem 1 uses a reduction from the planar
3-SAT problem. The proofs of these results are deferred to the next section.
We apply some of the ideas that they were used in the reductions for proving
the NP-completeness of the domination problem [10]. We finish the paper with
discussion and open problems.

2 Proof of Theorem 1 and Corollary 1

We need some basic definitions from graph theory; for more background on graph
theory, see [17]. If v is a node of a graph G, then the eccentricity of v is defined
as max{d(v, u) : u ∈ V (G)}. The center of G consists of the nodes in G with
minimum eccentricity. Every node in the center of G is called a central node of
G. The radius of G is the minimum eccentricity over the set of all nodes in G.
The diameter of G is the maximum eccentricity over the set of all nodes in G.
Given a positive integer k, the k-th closed neighborhood of v is defined to be the
set {u ∈ V (G) : d(u, v) ≤ k} and is denoted by Nk[v]; we denote N1[v] simply
by N [v].

For s ≥ 3, let K1,s denotes a star ; that is, a complete bipartite graph with
parts of order 1 and s. We call a graph obtained by a sequence of subdivisions
starting from K1,s a spider graph SP . A subgraph of SP which is obtained by
finitely many times subdividing an edge of K1,s is called an arm of SP (we think
of the central node as belonging to each arm). If all arms of a spider graph are
of the same length r, then we denote such a spider graph by SP (s, r). If we
join the central nodes of two spider graphs SP (s, r) by adding an edge between
them, then we call the obtained graph a double spider graph, and we denote it
by DSP (s, r). In a spider graph SP (s, r) there is only one central node that is
in fact corresponding to the central node of the initial star K1,s. Similarly, in a
double spider graph DSP (s, r) there are exactly two adjacent central nodes that
are corresponding to the central node of the initial copies of star graph K1,s.

By a recursive argument, we may find the burning number of paths in poly-
nomial time.

Theorem 2. For every path Pn on n nodes, we have that b(Pn) = ⌈n1/2⌉.

Proof. We first make the following observation. Suppose that (x1, x2, . . . , xk),
where k ≥ 3, is a burning sequence for a given graph G. For 1 ≤ i ≤ k, the
fire spread from xi will burn only all the nodes within distance k − i from xi

by the end of the k-th step. On the other hand, every node v ∈ V (G) must be
either a source of fire, or burned from at least one of the sources of fire by the
end of the k-th step. In other words, any node of G that is not a source of fire



must be an element of Nk−i[xi], for some 1 ≤ i ≤ k. Therefore, we can see that
(x1, x2, . . . , xk) forms a burning sequence for G if and only if the following set
equation holds:

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G). (1)

From (1), and the fact that for a node v in a path, |Ni[v]| ≤ 2i + 1 we derive
that

(2(k − 1) + 2(k − 2) + . . .+ 2(1)) + k

= 2

(

k(k − 1)

2

)

+ k

= k2 ≥ n.

Since k is the minimum number satisfying this inequality, we conclude that
b(Pn) ≥ ⌈n1/2⌉.

Now let Pn have nodes v1, v2, . . . , vn, and for i = 1, . . . , k − 1, we choose
xi = vn−i2−i+2. For i = k, if n ≥ (k − 1)2 + k, we take xk = vn−k2−k+2;
otherwise, we let xk = v1. Thus, we can burn Pn in exactly k steps by using the
burning sequence (x1, x2, . . . , xk). Hence, b(Pn) ≤ k.

Note that in the proof of Theorem 2 the burning sequence (x1, x2, . . . , xk) for
paths may be found in polynomial time. The following theorem (proof omitted)
gives us useful bounds for the burning number of a graph G.

Theorem 3. For a connected graph G of radius r and diameter d we have that

⌈(d+ 1)1/2⌉ ≤ b(G) ≤ r + 1.

Note that the bounds in Theorem 3 are tight, since by Theorem 2, the lower
bound is achieved by paths, and by Lemma 1 (1), the upper bound is achieved
by spider graphs.

A subgraph H of a graph G is called an isometric subgraph if, for every pair
of nodes in H denoted by u, v, dH(u, v) = dG(u, v). For example, since there is
a unique path between any two nodes of a tree, every subtree of a tree is an
isometric subgraph. As another example, if G is a connected graph and P is a
shortest path connecting two nodes of G, then P is an isometric subgraph of G.
The following theorem, whose proof is omitted, is important for our proofs.

Theorem 4. For an isometric subgraph H of a graph G, we have that b(H) ≤
b(G).

We note that the inequality in Theorem 4 does not hold for non-isometric
subgraphs. For example, let H be a path of order n ≥ 5, and form G by adding
a universal node to H. Then by Theorem 2, b(H) = 3, but b(G) = 2.

We can characterize the graphs with burning number 2 by the theorem below
(with proof omitted).



Theorem 5. A graph G satisfies b(G) = 2 if and only if G has order at least 2,
and has maximum degree n− 1 or n− 2.

From Theorem 5 we can determine if the burning number of a given graph
G is equal to 2 or not in polynomial time. We now need the following lemma to
prove Theorem 1.

Lemma 1. 1. For a spider graph SP (s, r), with s ≥ r, we have that b(SP (s, r)) =
r + 1. Moreover, for s ≥ r + 2, every optimal burning sequence of SP (s, r)
must start by burning the central node.

2. For a double spider graph DSP (s, r) with s ≥ r+1, we have that b(DSP (s, r)) =
r+2. Moreover, for s ≥ r+2, if u and v are the central nodes of DSP (s, r),
and in an optimal burning sequence (x1, x2, . . . , xr+2) node x1 is not a cen-
tral node, then either x1 is adjacent to u and x2 = v, or x1 is adjacent to v

and x2 = u.

As the proof of Lemma 1 (2) is analogous to the proof of item (1), we omit
it owing to space considerations.

Proof. First, by Theorem 3, we know that b(SP (s, r)) ≤ r + 1, as SP (s, r) has
radius r. Since SP (r, r) is an isometric subgraph of SP (s, r), with s ≥ r, it
suffices to show that b(SP (r, r)) = r + 1.

We need to prove that every burning sequence of SP (r, r) is of length at least
r+1. Suppose otherwise; that is, there exist a burning sequence (x1, x2, . . . , xr)
for SP (r, r). First, we claim that in such a burning sequence there must be a
source of fire selected from each arm of SP (r, r). Otherwise, assume that there
exist an arm of SP (r, r) such that we do not burn directly any node of it as a
source of fire throughout the process. Since the fire should burn every node in
SP (r, r), at some step, the fire should spread through the nodes of that arm,
and this can happen, in the best case, in the second step and only from the
central node (this follows since the only connection of each arm to the rest of
the graph is through the central node). Consequently, after burning the center,
the fire needs exactly r + 1 steps to burn every node on that arm, which is
a contradiction. Hence, in this burning process we have to choose at least one
source of fire from each arm. Now, we have two possibilities: either the center
node is in the burning sequence or not.

If we choose the center node as one of the sources of fire, then by the Pi-
geonhole Principle, there must be an arm which we do not select any node of
it (rather than the center node) as a source of fire throughout the process. But
the fire must be spread to all nodes of such an arm. Thus, we need at least r+1
steps, which is a contradiction. Thus, the existence of such a burning sequence
is impossible.

If the center node is not taken as a source of fire, then, by above claim, we
have to select exactly one node from each arm as a source of fire. In this way,
when we are choosing the last source of fire from the last arm, every node on
that arm should be burned before the last step, except for at most two nodes.
Thus, we need at least 1+(r−1)+1 = r+1 steps, which is again a contradiction.



Therefore, such a burning sequence does not exist, and every burning sequence
for SP (r, r) must be of length at least r + 1. Hence, b(SP (r, r)) = r + 1.

Now, suppose that s ≥ r + 2, and there exist an optimal burning sequence
of SP (s, r) which does not start by burning the central node. Therefore, by the
Pigeonhole Principle, one of the arms does not include any source of fire, except
for possibly the central node, which can be a source of fire in other steps. Hence,
we need at least 1 + (r + 1) steps for burning the nodes on that arm, which
is a contradiction. Thus, every optimal burning sequence of SP (s, r) starts by
burning the central node, when s ≥ r + 2.

We now state the following decision problem to prove the NP-completeness
of the burning number problem. A graph G is planar if there is a drawing of G in
the plane such that no two edges of G cross each other except at the end-points.
Assume that U = {u1, u2, . . . uk} is a finite set of Boolean variables. A 3-element
set C = {x1, x2, x3} in which each xi is an element of U like ui or its negation
(denoted by ui), and we do not have both ui and ui in the same time in C, is
called a clause over U . Given set U and a collection of 3-element clauses over U
such as C = {C1, C2, . . . , Cm}, we may construct a graph G(C) as follows. For
1 ≤ i ≤ k, let Ei = {ui, ui} be an edge between two nodes corresponding to

variable ui ∈ U and its negation. We take C ∪
(

⋃k
i=1

Ei

)

as the set of nodes of

G(C). We join each ui to any Cj satisfying ui ∈ Cj . Similarly, we join each ui to
any Cj that ui ∈ Cj .

Problem: Planar 3-SAT

Instance: A finite set U = {u1, u2, . . . uk} of Boolean variables and a collection
C = {C1, C2, . . . , Cm} of 3-element clauses over U , such that the graph G(C) as
described above is planar.
Question: Is there any satisfying truth assignment for C; that is, a truth as-
signment for the variables in U such that every clause in C contains at least one
True assigned variable?

It is known that planar 3-SAT is NP-complete; see [14].

Proof (Proof of Theorem 1). The burning problem is in NP since it takes poly-
nomial time to find the (k−i)-th neighborhood of xi, for 1 ≤ i ≤ k, and therefore,
to verify (1).

Now, let U = {u1, u2, . . . uk} for some positive integer k, and let

C = {C1, C2, . . . , Cm}

be a collection of 3-element clauses over U . We construct a graph G′(C) based
on C as follows. First, we consider the graph G(C) as mentioned above with

nodes C ∪
(

⋃k
i=1

Ei

)

, where Ei = {ui, ui}. Then we replace each edge {ui, Cj}

and {ui, Cj} in G(C) with a path of length k + 1 − i denoted by Pij1 and Pij2,
respectively. Second, we add a single new node s′. We join arbitrarily s′ to
one of the nodes in C, and we attach to each node ui and ui a spider graph
SP (k+2− i, k− i) denoted by Si1 and Si2 (with centers ui and ui), respectively.



Finally, we add a copy of a spider graph SP (k + 4, k + 1) with center s to the
obtained graph, by connecting one of the leaves of SP (k + 4, k + 1) to a node
of C. The resulting graph is G′(C); see Figure 2. It is evident that |V (G′(C))| =
O(k3 +mk2 +m). The graph G′(C) is planar as we have attached some copies
of the spider graphs to a subdivision of G(C) which is a planar graph. Note that
C forms an independent set for G′(C). Moreover, for 1 ≤ i ≤ k, every edge Ei

forms the center of a double spider graph DSP (k− i+2, k− i), denoted by DSi.

Fig. 2: A depiction of the graph G
′(C).

We want to show that C is satisfiable over U (of size k) if and only if G′(C)
has a burning sequence of size k + 2. First, suppose that there is a satisfying
truth assignment for C. Take S = (s, x1, x2, . . . , xk, s

′) in which xi = ui if ui is
True; otherwise, xi = ui. We claim that S forms a burning sequence of size k+2
for G′(C). To show this, we need to prove that by burning S in the specified
order, every other node in G′(C) will be burned after k + 2 steps. First, we can
easily see that for 1 ≤ i ≤ k, all nodes in Si1 and Si2 are within distance k− i+1
from xi, and they will be burned after (k − i + 1) + i + 1 = k + 2 steps. Since
the xi’s satisfy C, each Cj ∈ C contains at least a True assigned variable like xi,
1 ≤ i ≤ k. Therefore, at the end of the (k + 2)-th step, Cj will be burned, by
the fire spread from xi through the path Pijl, where l ∈ {1, 2}. All the internal
nodes on each Pijl are of distance at most k − i + 1 from xi, and hence, they
will be burned after (k − i+ 1) + i+ 1 = k + 2 steps. Finally, by Lemma 1 (1),
all the nodes on SP (k + 4, k + 1) will be burned at step k + 2 (after burning s

in the first step).
Conversely, suppose that G′(C) has a burning sequence of size k+2 denoted

by (y1, y2, . . . , yk+2). Since we have a copy of SP (k + 3, k + 1) with the center



s, and by construction, here SP (k+ 3, k+1) is an isometric subgraph of G′(C),
then by Theorem 3, we have b(G′(C)) ≥ k + 2. But by assumption, G′(C) has
already a burning sequence of length k + 2. Hence, the sequence must be an
optimal burning sequence. Since the only connection between SP (k + 3, k + 1)
and the rest of G′(C) is through a path of length k+ 2 which is adjacent just to
s, then by Lemma 1 (1) we conclude that y1 must be equal to s.

Now the nodes in E1 form the set of central nodes of a DSP (k + 1, k − 1)
as an isometric subgraph of G′(C). Therefore, by Lemma 1 (2), we need at least
k + 1 steps to burn this DSP (k + 1, k − 1). But we already chose y1 = s, and
d(s, x) ≥ k+3 for each x ∈ E1. On the other hand, the two nodes in E2 are the
central nodes of a DSP (k, k − 2) as an isometric subgraph of G′(C). Thus, by
Lemma 1 (2), we need at least k steps for burning this DSP (k, k−2). Therefore,
we have to choose y3 from DS2, and we know that d(x, y) ≥ (k−1)+(k−2) ≥ k,
for any x ∈ E1 and y ∈ E2. This implies that such a x and y cannot have common
neighbours. Thus, by Lemma 1 (2), y2 6= y3 and we conclude that y2 must be
the central node of a S1q with q ∈ {1, 2}; that is, y2 = x, for some x ∈ E1.

Similarly, by induction, for each 2 ≤ i ≤ k−1, the nodes in Ei are the central
nodes of a DSP (k − i + 2, k − i) as an isometric subgraph of G′(C). Thus, by
Lemma 1 (2), we need at least k−i+2 steps for burning this DSP (k−i+2, k−i).
Therefore, for 1 ≤ i ≤ k− 1, we have to choose yi+1 from one of the Sil’s, where
q ∈ {1, 2}. But we already have selected y1 = s, y2, . . . , yi, and d(s, x) ≥ k + 3,
for any x ∈ Ei. Further, d(x, y) > k − i, for any x ∈ Ei and y ∈ Ej with
1 ≤ j ≤ i − 1. On the other hand, the nodes in Ei+1 are the central nodes of a
DSP (k−i+1, k−i−1) as an isometric subgraph of G′(C). Thus, by Lemma 1 (2),
we need at least k− i+1 steps for burning this DSP (k− i+1, k− i). Therefore,
we have to choose yi+2 from DSi+1, and we know that d(x, y) > k − i, for any
x ∈ Ei and y ∈ Ei+1. It implies that such x’s and y’s cannot have common
neighbours. Thus, by Lemma 1 (2) we have that yi+1 6= yi+2, and we conclude
that yi+1 must be the central node of a Sil, where l ∈ {1, 2}; that is, yi+1 = x,
for some x ∈ Ei.

After choosing y1 = s, y2, . . . , yk, we consider yk+1 as follows. We know that
Ek is an edge with two nodes and for burning an edge we need two steps. On
the other hand, all nodes in the neighborhood of Ek are unburned so far, and
there is no node among them adjacent to both nodes of Ek (which follows by
the definition of 3-SAT where we assume ui and its negation do not appear in
any given clause), and we are left only with two steps. Therefore, we must have
yk+1 ∈ Ek. Finally, since s′ is of distance at least two from any burned node in
the (k + 1)-th step, then we have that yk+2 = s′.

We know that, by our above discussion, all nodes in Ei’s, Sil’s, Pijl’s (except
for possibly the end points of some of Pijl’s which are in C), and SP (k+3, k+1)
will be burned after k + 2 steps. Now, we have to consider C. By assumption,
b(G′(C)) = k + 2, and we already proved that for 1 ≤ i ≤ k, yi+1 must be
selected from Ei. On the other hand, since Ei is an edge, and considering the
construction of G′(C), if yi+1 = x ∈ Ei, and Pijl’s are the paths that connect x
to the nodes in C, then we can easily see that by the end of the (k + 2)-th step,



all nodes on Pijl ’s including their end points in C are burned. But for any other
Pijr , r 6= l, the end point of Pijl which is a node in C is not burned. Therefore,
for having C burned by the end of the (k + 2)-th step, there must be a selection
of y2, y3, . . . , yk+1 such that each Cj ∈ C will be burned by receiving the fire
spread from yi’s at the (k + 2)-th step. Hence, {yi}

k+1

i=2 must be assigned True
variables which satisfy C.

The preceding discussion provides a reduction from planar 3-SAT problem to
the burning problem on a connected planar graph. We may modify G′(C) such
that the resulting graph is disconnected, just by taking s′ as an isolated node,
and proof will be analogous. Hence, burning problem is NP-complete as well for
disconnected graphs.

We are now ready to give our proof of Corollary 1.

Proof (Proof of Corollary 1). From Theorem 1, we know that for a graph G, and
k ≥ 3 the decision problem b(G) ≤ k is NP-complete. Now, we now show that
there exists a reduction from this problem to the decision problem b(B) ≤ k+1,
where B is a bipartite graph.

Let G be a graph with node set V (G) = {v1, v2, . . . , vn}. We construct a bi-
partite graph G′ based on the structure of G as follows. First, we take two copies
of the node set of G denoted by X = {v′1, v

′

2, . . . , v
′

n} and Y = {v′′1 , v
′′

2 , . . . , v
′′

n}.
For 1 ≤ i, j ≤ n, we join v′i to v′′j if and only if, either i = j or vj is a neighbor
of vi in G. When we refer to a subset of nodes in X that is corresponding to the
closed r-neighborhood of a node such as v in G, we denote it by NX

r [v]. Similarly,
we denote such a subset of Y by NY

r [v]. Then we add a copy of a spider graph
SP (n+ k+1, k) with center s and we identify n leaves of it by nodes in Y . The
resulted graph is called G′, and is bipartite. Also, |V (G′)| = n+k(n+k+1)+1,
and we can easily see that G′ is constructed in polynomial time from G. More-
over, since SP (n + k + 1, k) is an isometric subgraph of G′, and by Lemma 1
(1), we conclude that

b(G′) ≥ b(SP (n+ k + 1, k)) = k + 1. (2)

Fig. 3: The graph G.

For example, if G is the graph in Figure 3, then G′ will be the graph in
Figure 4. We need the following elementary lemma to complete the reduction.



Fig. 4: The graph G
′.

Lemma 2. For any node v′ ∈ X in the above bipartite graph G′ which is corre-
sponding to node v ∈ V (G) we have that Nr[v

′] = NX
r [v], if r is even; otherwise,

Nr[v
′] = NY

r [v]. Similarly, for v′′ ∈ Y corresponding to v ∈ V (G) if r is even,
then Nr[v

′′] = NY
r [v]; otherwise, we have that Nr[v

′′] = NX
r [v].

First, assume that b(G) = k, and x1, x2, . . . , xk is a burning sequence for
G. We claim that b(G′) = k + 1. By (2), to prove b(G′) = k + 1 it suffices
to show that S = (y0 = s, y1 = x′

1, y2 = x′′

2 , . . . , yk = x′′

k) if k is odd, and
S = (y0 = s, y1 = x′′

1 , y2 = x′

2, . . . , yk = x′

k) when k is even, is a burning sequence
for G′. Clearly, by burning s in the first step, every node in SP (n + k + 1, k),
including the nodes in Y , will be burned after k + 1 steps. Thus, we have to
show that by the end of the (k + 1)-th step all nodes of X will be burned. If k
is odd, then for each i that is odd, we selected yi from X , and for each even i

we selected yi from Y . Thus, by Lemma 2, we can easily see that for 1 ≤ i ≤ k

considering the parity of k − i, Nk−i[yi] = NX
k−i[xi] (based on the notation that

we defined at the beginning of this proof). Similarly, using Lemma 2, we can
conclude that if k is even, then for 1 ≤ i ≤ k, Nk−i[yi] = NX

k−i[xi]. Since, by
assumption, (x1, x2, . . . , xk) is a burning sequence forG, then the Nk−i[xi]’s form
a covering for V (G) = X . Thus, X will be burned by the end of the (k + 1)-th
step. Therefore, b(G′) = k + 1.

Now assume that b(G′) = k+1. We want to show that b(G) ≤ k. By Lemma 1
(2), for burning the leaves of SP (n + k + 1, k) that have no connection to the
rest of G′ except through s (and we have k + 1 number of such leaves), we
have to start from s. Also, by burning s in the first step, every other node in
SP (n + k + 1, k) will be burned after k + 1 steps, so we can assume that the
other sources of fire are selected from X ∪ Y . Thus, every burning sequence for
G′ is of the form (y0 = s, y1, y2, . . . , yk), in which yi ∈ X ∪ Y , for 1 ≤ i ≤ k.
Also, since all the nodes in X must be burned by the end of the (k+1)-th step,
we conclude that the sets Nk−i[yi] ∩ X form a covering for X . We know that
for 1 ≤ i ≤ k, either yi = v′ji or yi = v′′ji for some 1 ≤ ji ≤ n. Therefore, by



Lemma 2, Nk−i[yi] ∩X = NX
r [vji ], in which r ≤ k − i (in fact, either r = k − i

or r = k − i− 1, depending on whether yi ∈ X or yi ∈ Y ). Hence, {NX
r [vji ]}

k
i=1

forms a covering for X . Thus, the sequence (x1 = vj1 , x2 = vj2 , . . . , xk = vjk )
forms a burning sequence for G. This implies that b(G) ≤ k, and the proof
follows.

3 Conclusions and open problems

Our main contribution is the algorithmic study of the new graph parameter, the
burning number of a graph, written b(G). The burning number measures how
rapidly contagion spreads in a given graph. We proved that the decision problem
for the burning number is NP-complete, even when restricted to graph classes
such as planar graphs, disconnected graphs, or bipartite graphs. A tantalizing
open problem is to determine the algorithmic complexity of the burning number
of trees. We remark that by equation (1), burning number is related to domina-
tion since any burning sequence gives us a covering for the set of nodes of the
graph in terms of the neighbourhoods. It is known that domination is in fact
polynomial time for trees [10]. In contrast, Firefighting is NP-complete even for
trees of maximum degree three [8].

A simple variation which leads to complex dynamics is to change the rules for
nodes to burn. As in graph bootstrap percolation [2], the rules could be varied
so nodes burn only if they are adjacent to at least r burned neighbors, where
r > 1. We plan on studying this variation in future work.
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